Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean up clippy for Rust 1.72 release #7399

Merged
merged 2 commits into from
Aug 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions datafusion/common/src/error.rs
Original file line number Diff line number Diff line change
Expand Up @@ -541,6 +541,7 @@ mod test {
}

#[test]
#[allow(clippy::unnecessary_literal_unwrap)]
fn test_make_error_parse_input() {
let res: Result<(), DataFusionError> = plan_err!("Err");
let res = res.unwrap_err();
Expand Down
26 changes: 14 additions & 12 deletions datafusion/common/src/scalar.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3405,7 +3405,7 @@ mod tests {
ScalarValue::Decimal128(Some(3), 10, 2),
];
// convert the vec to decimal array and check the result
let array = ScalarValue::iter_to_array(decimal_vec.into_iter()).unwrap();
let array = ScalarValue::iter_to_array(decimal_vec).unwrap();
assert_eq!(3, array.len());
assert_eq!(DataType::Decimal128(10, 2), array.data_type().clone());

Expand All @@ -3415,7 +3415,7 @@ mod tests {
ScalarValue::Decimal128(Some(3), 10, 2),
ScalarValue::Decimal128(None, 10, 2),
];
let array = ScalarValue::iter_to_array(decimal_vec.into_iter()).unwrap();
let array = ScalarValue::iter_to_array(decimal_vec).unwrap();
assert_eq!(4, array.len());
assert_eq!(DataType::Decimal128(10, 2), array.data_type().clone());

Expand Down Expand Up @@ -3578,6 +3578,8 @@ mod tests {
}

#[test]
// despite clippy claiming they are useless, the code doesn't compile otherwise.
#[allow(clippy::useless_vec)]
fn scalar_iter_to_array_boolean() {
check_scalar_iter!(Boolean, BooleanArray, vec![Some(true), None, Some(false)]);
check_scalar_iter!(Float32, Float32Array, vec![Some(1.9), None, Some(-2.1)]);
Expand Down Expand Up @@ -3640,7 +3642,7 @@ mod tests {
fn scalar_iter_to_array_empty() {
let scalars = vec![] as Vec<ScalarValue>;

let result = ScalarValue::iter_to_array(scalars.into_iter()).unwrap_err();
let result = ScalarValue::iter_to_array(scalars).unwrap_err();
assert!(
result
.to_string()
Expand All @@ -3658,13 +3660,13 @@ mod tests {
ScalarValue::Dictionary(Box::new(key_type), Box::new(value))
}

let scalars = vec![
let scalars = [
make_val(Some("Foo".into())),
make_val(None),
make_val(Some("Bar".into())),
];

let array = ScalarValue::iter_to_array(scalars.into_iter()).unwrap();
let array = ScalarValue::iter_to_array(scalars).unwrap();
let array = as_dictionary_array::<Int32Type>(&array).unwrap();
let values_array = as_string_array(array.values()).unwrap();

Expand All @@ -3686,9 +3688,9 @@ mod tests {
fn scalar_iter_to_array_mismatched_types() {
use ScalarValue::*;
// If the scalar values are not all the correct type, error here
let scalars: Vec<ScalarValue> = vec![Boolean(Some(true)), Int32(Some(5))];
let scalars = [Boolean(Some(true)), Int32(Some(5))];

let result = ScalarValue::iter_to_array(scalars.into_iter()).unwrap_err();
let result = ScalarValue::iter_to_array(scalars).unwrap_err();
assert!(result.to_string().contains("Inconsistent types in ScalarValue::iter_to_array. Expected Boolean, got Int32(5)"),
"{}", result);
}
Expand Down Expand Up @@ -3776,21 +3778,21 @@ mod tests {
}};
}

let bool_vals = vec![Some(true), None, Some(false)];
let f32_vals = vec![Some(-1.0), None, Some(1.0)];
let bool_vals = [Some(true), None, Some(false)];
let f32_vals = [Some(-1.0), None, Some(1.0)];
let f64_vals = make_typed_vec!(f32_vals, f64);

let i8_vals = vec![Some(-1), None, Some(1)];
let i8_vals = [Some(-1), None, Some(1)];
let i16_vals = make_typed_vec!(i8_vals, i16);
let i32_vals = make_typed_vec!(i8_vals, i32);
let i64_vals = make_typed_vec!(i8_vals, i64);

let u8_vals = vec![Some(0), None, Some(1)];
let u8_vals = [Some(0), None, Some(1)];
let u16_vals = make_typed_vec!(u8_vals, u16);
let u32_vals = make_typed_vec!(u8_vals, u32);
let u64_vals = make_typed_vec!(u8_vals, u64);

let str_vals = vec![Some("foo"), None, Some("bar")];
let str_vals = [Some("foo"), None, Some("bar")];

/// Test each value in `scalar` with the corresponding element
/// at `array`. Assumes each element is unique (aka not equal
Expand Down
2 changes: 1 addition & 1 deletion datafusion/core/benches/data_utils/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ fn create_record_batch(
) -> RecordBatch {
// the 4 here is the number of different keys.
// a higher number increase sparseness
let vs = vec![0, 1, 2, 3];
let vs = [0, 1, 2, 3];
let keys: Vec<String> = (0..batch_size)
.map(
// use random numbers to avoid spurious compiler optimizations wrt to branching
Expand Down
10 changes: 5 additions & 5 deletions datafusion/core/benches/sort.rs
Original file line number Diff line number Diff line change
Expand Up @@ -329,8 +329,8 @@ fn utf8_tuple_streams(sorted: bool) -> PartitionedBatches {
let mut tuples: Vec<_> = gen
.utf8_low_cardinality_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.utf8_high_cardinality_values().into_iter())
.zip(gen.utf8_low_cardinality_values())
.zip(gen.utf8_high_cardinality_values())
.collect();

if sorted {
Expand Down Expand Up @@ -362,9 +362,9 @@ fn mixed_tuple_streams(sorted: bool) -> PartitionedBatches {
let mut tuples: Vec<_> = gen
.i64_values()
.into_iter()
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.utf8_low_cardinality_values().into_iter())
.zip(gen.i64_values().into_iter())
.zip(gen.utf8_low_cardinality_values())
.zip(gen.utf8_low_cardinality_values())
.zip(gen.i64_values())
.collect();

if sorted {
Expand Down
2 changes: 1 addition & 1 deletion datafusion/core/src/catalog/schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ mod tests {

let actual = df.collect().await.unwrap();

let expected = vec![
let expected = [
"+----+----------+",
"| id | bool_col |",
"+----+----------+",
Expand Down
64 changes: 30 additions & 34 deletions datafusion/core/src/dataframe.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1330,7 +1330,7 @@ mod tests {
let df_results = df.collect().await?;

assert_batches_sorted_eq!(
vec!["+------+", "| f.c1 |", "+------+", "| 1 |", "| 10 |", "+------+",],
["+------+", "| f.c1 |", "+------+", "| 1 |", "| 10 |", "+------+"],
&df_results
);

Expand All @@ -1354,17 +1354,15 @@ mod tests {
let df: Vec<RecordBatch> = df.aggregate(group_expr, aggr_expr)?.collect().await?;

assert_batches_sorted_eq!(
vec![
"+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+",
["+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+",
"| c1 | MIN(aggregate_test_100.c12) | MAX(aggregate_test_100.c12) | AVG(aggregate_test_100.c12) | SUM(aggregate_test_100.c12) | COUNT(aggregate_test_100.c12) | COUNT(DISTINCT aggregate_test_100.c12) |",
"+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+",
"| a | 0.02182578039211991 | 0.9800193410444061 | 0.48754517466109415 | 10.238448667882977 | 21 | 21 |",
"| b | 0.04893135681998029 | 0.9185813970744787 | 0.41040709263815384 | 7.797734760124923 | 19 | 19 |",
"| c | 0.0494924465469434 | 0.991517828651004 | 0.6600456536439784 | 13.860958726523545 | 21 | 21 |",
"| d | 0.061029375346466685 | 0.9748360509016578 | 0.48855379387549824 | 8.793968289758968 | 18 | 18 |",
"| e | 0.01479305307777301 | 0.9965400387585364 | 0.48600669271341534 | 10.206140546981722 | 21 | 21 |",
"+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+",
],
"+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+"],
&df
);

Expand Down Expand Up @@ -1403,17 +1401,15 @@ mod tests {

#[rustfmt::skip]
assert_batches_sorted_eq!(
vec![
"+----+",
["+----+",
"| c1 |",
"+----+",
"| a |",
"| b |",
"| c |",
"| d |",
"| e |",
"+----+",
],
"+----+"],
&df_results
);

Expand Down Expand Up @@ -1636,7 +1632,7 @@ mod tests {
let table_results = &table.aggregate(group_expr, aggr_expr)?.collect().await?;

assert_batches_sorted_eq!(
vec![
[
"+----+-----------------------------+",
"| c1 | SUM(aggregate_test_100.c12) |",
"+----+-----------------------------+",
Expand All @@ -1645,14 +1641,14 @@ mod tests {
"| c | 13.860958726523545 |",
"| d | 8.793968289758968 |",
"| e | 10.206140546981722 |",
"+----+-----------------------------+",
"+----+-----------------------------+"
],
&df_results
);

// the results are the same as the results from the view, modulo the leaf table name
assert_batches_sorted_eq!(
vec![
[
"+----+---------------------+",
"| c1 | SUM(test_table.c12) |",
"+----+---------------------+",
Expand All @@ -1661,7 +1657,7 @@ mod tests {
"| c | 13.860958726523545 |",
"| d | 8.793968289758968 |",
"| e | 10.206140546981722 |",
"+----+---------------------+",
"+----+---------------------+"
],
table_results
);
Expand Down Expand Up @@ -1719,7 +1715,7 @@ mod tests {
let df_results = df.clone().collect().await?;

assert_batches_sorted_eq!(
vec![
[
"+----+----+-----+-----+",
"| c1 | c2 | c3 | sum |",
"+----+----+-----+-----+",
Expand All @@ -1729,7 +1725,7 @@ mod tests {
"| a | 3 | 13 | 16 |",
"| a | 3 | 14 | 17 |",
"| a | 3 | 17 | 20 |",
"+----+----+-----+-----+",
"+----+----+-----+-----+"
],
&df_results
);
Expand All @@ -1742,7 +1738,7 @@ mod tests {
.await?;

assert_batches_sorted_eq!(
vec![
[
"+-----+----+-----+-----+",
"| c1 | c2 | c3 | sum |",
"+-----+----+-----+-----+",
Expand All @@ -1752,7 +1748,7 @@ mod tests {
"| 16 | 3 | 13 | 16 |",
"| 17 | 3 | 14 | 17 |",
"| 20 | 3 | 17 | 20 |",
"+-----+----+-----+-----+",
"+-----+----+-----+-----+"
],
&df_results_overwrite
);
Expand All @@ -1765,7 +1761,7 @@ mod tests {
.await?;

assert_batches_sorted_eq!(
vec![
[
"+----+----+-----+-----+",
"| c1 | c2 | c3 | sum |",
"+----+----+-----+-----+",
Expand All @@ -1775,7 +1771,7 @@ mod tests {
"| a | 4 | 13 | 16 |",
"| a | 4 | 14 | 17 |",
"| a | 4 | 17 | 20 |",
"+----+----+-----+-----+",
"+----+----+-----+-----+"
],
&df_results_overwrite_self
);
Expand Down Expand Up @@ -1810,12 +1806,12 @@ mod tests {
.await?;

assert_batches_sorted_eq!(
vec![
[
"+-----+-----+----+-------+",
"| one | two | c3 | total |",
"+-----+-----+----+-------+",
"| a | 3 | 13 | 16 |",
"+-----+-----+----+-------+",
"+-----+-----+----+-------+"
],
&df_sum_renamed
);
Expand Down Expand Up @@ -1882,12 +1878,12 @@ mod tests {

let df_results = df.clone().collect().await?;
assert_batches_sorted_eq!(
vec![
[
"+----+----+-----+----+----+-----+",
"| c1 | c2 | c3 | c1 | c2 | c3 |",
"+----+----+-----+----+----+-----+",
"| a | 1 | -85 | a | 1 | -85 |",
"+----+----+-----+----+----+-----+",
"+----+----+-----+----+----+-----+"
],
&df_results
);
Expand Down Expand Up @@ -1919,12 +1915,12 @@ mod tests {
let df_results = df_renamed.collect().await?;

assert_batches_sorted_eq!(
vec![
[
"+-----+----+-----+----+----+-----+",
"| AAA | c2 | c3 | c1 | c2 | c3 |",
"+-----+----+-----+----+----+-----+",
"| a | 1 | -85 | a | 1 | -85 |",
"+-----+----+-----+----+----+-----+",
"+-----+----+-----+----+----+-----+"
],
&df_results
);
Expand Down Expand Up @@ -1961,12 +1957,12 @@ mod tests {
let res = &df_renamed.clone().collect().await?;

assert_batches_sorted_eq!(
vec![
[
"+---------+",
"| CoLuMn1 |",
"+---------+",
"| a |",
"+---------+",
"+---------+"
],
res
);
Expand All @@ -1977,7 +1973,7 @@ mod tests {
.await?;

assert_batches_sorted_eq!(
vec!["+----+", "| c1 |", "+----+", "| a |", "+----+",],
["+----+", "| c1 |", "+----+", "| a |", "+----+"],
&df_renamed
);

Expand Down Expand Up @@ -2022,12 +2018,12 @@ mod tests {
let df_results = df.clone().collect().await?;
df.clone().show().await?;
assert_batches_sorted_eq!(
vec![
[
"+----+----+-----+",
"| c2 | c3 | sum |",
"+----+----+-----+",
"| 2 | 1 | 3 |",
"+----+----+-----+",
"+----+----+-----+"
],
&df_results
);
Expand Down Expand Up @@ -2088,13 +2084,13 @@ mod tests {
let df_results = df.collect().await?;

assert_batches_sorted_eq!(
vec![
[
"+------+-------+",
"| f.c1 | f.c2 |",
"+------+-------+",
"| 1 | hello |",
"| 10 | hello |",
"+------+-------+",
"+------+-------+"
],
&df_results
);
Expand All @@ -2120,12 +2116,12 @@ mod tests {
let df_results = df.collect().await?;
let cached_df_results = cached_df.collect().await?;
assert_batches_sorted_eq!(
vec![
[
"+----+----+-----+",
"| c2 | c3 | sum |",
"+----+----+-----+",
"| 2 | 1 | 3 |",
"+----+----+-----+",
"+----+----+-----+"
],
&cached_df_results
);
Expand Down
Loading