Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Push limit into aggregation for DISTINCT ... LIMIT queries #8038

Merged
merged 15 commits into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions datafusion/common/src/config.rs
Original file line number Diff line number Diff line change
Expand Up @@ -427,6 +427,11 @@ config_namespace! {
config_namespace! {
/// Options related to query optimization
pub struct OptimizerOptions {
/// When set to true, the optimizer will push a limit operation into
/// grouped aggregations which have no aggregate expressions, as a soft limit,
/// emitting groups once the limit is reached, before all rows in the group are read.
pub enable_distinct_aggregation_soft_limit: bool, default = true
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💯 for a disable flag


/// When set to true, the physical plan optimizer will try to add round robin
/// repartitioning to increase parallelism to leverage more CPU cores
pub enable_round_robin_repartition: bool, default = true
Expand Down
11 changes: 11 additions & 0 deletions datafusion/common/src/tree_node.rs
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,17 @@ pub trait TreeNode: Sized {
after_op.map_children(|node| node.transform_down(op))
}

/// Convenience utils for writing optimizers rule: recursively apply the given 'op' to the node and all of its
/// children(Preorder Traversal) using a mutable function, `F`.
/// When the `op` does not apply to a given node, it is left unchanged.
fn transform_down_mut<F>(self, op: &mut F) -> Result<Self>
where
F: FnMut(Self) -> Result<Transformed<Self>>,
{
let after_op = op(self)?.into();
after_op.map_children(|node| node.transform_down_mut(op))
}

/// Convenience utils for writing optimizers rule: recursively apply the given 'op' first to all of its
/// children and then itself(Postorder Traversal).
/// When the `op` does not apply to a given node, it is left unchanged.
Expand Down
4 changes: 4 additions & 0 deletions datafusion/core/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,10 @@ nix = { version = "0.27.1", features = ["fs"] }
harness = false
name = "aggregate_query_sql"

[[bench]]
harness = false
name = "distinct_query_sql"

[[bench]]
harness = false
name = "sort_limit_query_sql"
Expand Down
85 changes: 85 additions & 0 deletions datafusion/core/benches/data_utils/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,16 @@ use arrow::{
datatypes::{DataType, Field, Schema, SchemaRef},
record_batch::RecordBatch,
};
use arrow_array::builder::{Int64Builder, StringBuilder};
use datafusion::datasource::MemTable;
use datafusion::error::Result;
use datafusion_common::DataFusionError;
use rand::rngs::StdRng;
use rand::seq::SliceRandom;
use rand::{Rng, SeedableRng};
use rand_distr::Distribution;
use rand_distr::{Normal, Pareto};
use std::fmt::Write;
use std::sync::Arc;

/// create an in-memory table given the partition len, array len, and batch size,
Expand Down Expand Up @@ -156,3 +161,83 @@ pub fn create_record_batches(
})
.collect::<Vec<_>>()
}

/// Create time series data with `partition_cnt` partitions and `sample_cnt` rows per partition
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for adding the comments here

/// in ascending order, if `asc` is true, otherwise randomly sampled using a Pareto distribution
#[allow(dead_code)]
pub(crate) fn make_data(
partition_cnt: i32,
sample_cnt: i32,
asc: bool,
) -> Result<(Arc<Schema>, Vec<Vec<RecordBatch>>), DataFusionError> {
// constants observed from trace data
let simultaneous_group_cnt = 2000;
let fitted_shape = 12f64;
let fitted_scale = 5f64;
let mean = 0.1;
let stddev = 1.1;
let pareto = Pareto::new(fitted_scale, fitted_shape).unwrap();
let normal = Normal::new(mean, stddev).unwrap();
let mut rng = rand::rngs::SmallRng::from_seed([0; 32]);

// populate data
let schema = test_schema();
let mut partitions = vec![];
let mut cur_time = 16909000000000i64;
for _ in 0..partition_cnt {
let mut id_builder = StringBuilder::new();
let mut ts_builder = Int64Builder::new();
let gen_id = |rng: &mut rand::rngs::SmallRng| {
rng.gen::<[u8; 16]>()
.iter()
.fold(String::new(), |mut output, b| {
let _ = write!(output, "{b:02X}");
output
})
};
let gen_sample_cnt =
|mut rng: &mut rand::rngs::SmallRng| pareto.sample(&mut rng).ceil() as u32;
let mut group_ids = (0..simultaneous_group_cnt)
.map(|_| gen_id(&mut rng))
.collect::<Vec<_>>();
let mut group_sample_cnts = (0..simultaneous_group_cnt)
.map(|_| gen_sample_cnt(&mut rng))
.collect::<Vec<_>>();
for _ in 0..sample_cnt {
let random_index = rng.gen_range(0..simultaneous_group_cnt);
let trace_id = &mut group_ids[random_index];
let sample_cnt = &mut group_sample_cnts[random_index];
*sample_cnt -= 1;
if *sample_cnt == 0 {
*trace_id = gen_id(&mut rng);
*sample_cnt = gen_sample_cnt(&mut rng);
}

id_builder.append_value(trace_id);
ts_builder.append_value(cur_time);

if asc {
cur_time += 1;
} else {
let samp: f64 = normal.sample(&mut rng);
let samp = samp.round();
cur_time += samp as i64;
}
}

// convert to MemTable
let id_col = Arc::new(id_builder.finish());
let ts_col = Arc::new(ts_builder.finish());
let batch = RecordBatch::try_new(schema.clone(), vec![id_col, ts_col])?;
partitions.push(vec![batch]);
}
Ok((schema, partitions))
}

/// The Schema used by make_data
fn test_schema() -> SchemaRef {
Arc::new(Schema::new(vec![
Field::new("trace_id", DataType::Utf8, false),
Field::new("timestamp_ms", DataType::Int64, false),
]))
}
208 changes: 208 additions & 0 deletions datafusion/core/benches/distinct_query_sql.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

#[macro_use]
extern crate criterion;
extern crate arrow;
extern crate datafusion;

mod data_utils;
use crate::criterion::Criterion;
use data_utils::{create_table_provider, make_data};
use datafusion::execution::context::SessionContext;
use datafusion::physical_plan::{collect, ExecutionPlan};
use datafusion::{datasource::MemTable, error::Result};
use datafusion_execution::config::SessionConfig;
use datafusion_execution::TaskContext;

use parking_lot::Mutex;
use std::{sync::Arc, time::Duration};
use tokio::runtime::Runtime;

fn query(ctx: Arc<Mutex<SessionContext>>, sql: &str) {
let rt = Runtime::new().unwrap();
let df = rt.block_on(ctx.lock().sql(sql)).unwrap();
criterion::black_box(rt.block_on(df.collect()).unwrap());
}

fn create_context(
partitions_len: usize,
array_len: usize,
batch_size: usize,
) -> Result<Arc<Mutex<SessionContext>>> {
let ctx = SessionContext::new();
let provider = create_table_provider(partitions_len, array_len, batch_size)?;
ctx.register_table("t", provider)?;
Ok(Arc::new(Mutex::new(ctx)))
}

fn criterion_benchmark_limited_distinct(c: &mut Criterion) {
let partitions_len = 10;
let array_len = 1 << 26; // 64 M
let batch_size = 8192;
let ctx = create_context(partitions_len, array_len, batch_size).unwrap();

let mut group = c.benchmark_group("custom-measurement-time");
group.measurement_time(Duration::from_secs(40));

group.bench_function("distinct_group_by_u64_narrow_limit_10", |b| {
b.iter(|| {
query(
ctx.clone(),
"SELECT DISTINCT u64_narrow FROM t GROUP BY u64_narrow LIMIT 10",
)
})
});

group.bench_function("distinct_group_by_u64_narrow_limit_100", |b| {
b.iter(|| {
query(
ctx.clone(),
"SELECT DISTINCT u64_narrow FROM t GROUP BY u64_narrow LIMIT 100",
)
})
});

group.bench_function("distinct_group_by_u64_narrow_limit_1000", |b| {
b.iter(|| {
query(
ctx.clone(),
"SELECT DISTINCT u64_narrow FROM t GROUP BY u64_narrow LIMIT 1000",
)
})
});

group.bench_function("distinct_group_by_u64_narrow_limit_10000", |b| {
b.iter(|| {
query(
ctx.clone(),
"SELECT DISTINCT u64_narrow FROM t GROUP BY u64_narrow LIMIT 10000",
)
})
});

group.bench_function("group_by_multiple_columns_limit_10", |b| {
b.iter(|| {
query(
ctx.clone(),
"SELECT u64_narrow, u64_wide, utf8, f64 FROM t GROUP BY 1, 2, 3, 4 LIMIT 10",
)
})
});
group.finish();
}

async fn distinct_with_limit(
plan: Arc<dyn ExecutionPlan>,
ctx: Arc<TaskContext>,
) -> Result<()> {
let batches = collect(plan, ctx).await?;
assert_eq!(batches.len(), 1);
let batch = batches.first().unwrap();
assert_eq!(batch.num_rows(), 10);

Ok(())
}

fn run(plan: Arc<dyn ExecutionPlan>, ctx: Arc<TaskContext>) {
let rt = Runtime::new().unwrap();
criterion::black_box(
rt.block_on(async { distinct_with_limit(plan.clone(), ctx.clone()).await }),
)
.unwrap();
}

pub async fn create_context_sampled_data(
sql: &str,
partition_cnt: i32,
sample_cnt: i32,
) -> Result<(Arc<dyn ExecutionPlan>, Arc<TaskContext>)> {
let (schema, parts) = make_data(partition_cnt, sample_cnt, false /* asc */).unwrap();
let mem_table = Arc::new(MemTable::try_new(schema, parts).unwrap());

// Create the DataFrame
let cfg = SessionConfig::new();
let ctx = SessionContext::new_with_config(cfg);
let _ = ctx.register_table("traces", mem_table)?;
let df = ctx.sql(sql).await?;
let physical_plan = df.create_physical_plan().await?;
Ok((physical_plan, ctx.task_ctx()))
}

fn criterion_benchmark_limited_distinct_sampled(c: &mut Criterion) {
let rt = Runtime::new().unwrap();

let limit = 10;
let partitions = 100;
let samples = 100_000;
let sql =
format!("select DISTINCT trace_id from traces group by trace_id limit {limit};");

let distinct_trace_id_100_partitions_100_000_samples_limit_100 = rt.block_on(async {
create_context_sampled_data(sql.as_str(), partitions, samples)
.await
.unwrap()
});

c.bench_function(
format!("distinct query with {} partitions and {} samples per partition with limit {}", partitions, samples, limit).as_str(),
|b| b.iter(|| run(distinct_trace_id_100_partitions_100_000_samples_limit_100.0.clone(),
distinct_trace_id_100_partitions_100_000_samples_limit_100.1.clone())),
);

let partitions = 10;
let samples = 1_000_000;
let sql =
format!("select DISTINCT trace_id from traces group by trace_id limit {limit};");

let distinct_trace_id_10_partitions_1_000_000_samples_limit_10 = rt.block_on(async {
create_context_sampled_data(sql.as_str(), partitions, samples)
.await
.unwrap()
});

c.bench_function(
format!("distinct query with {} partitions and {} samples per partition with limit {}", partitions, samples, limit).as_str(),
|b| b.iter(|| run(distinct_trace_id_10_partitions_1_000_000_samples_limit_10.0.clone(),
distinct_trace_id_10_partitions_1_000_000_samples_limit_10.1.clone())),
);

let partitions = 1;
let samples = 10_000_000;
let sql =
format!("select DISTINCT trace_id from traces group by trace_id limit {limit};");

let rt = Runtime::new().unwrap();
let distinct_trace_id_1_partition_10_000_000_samples_limit_10 = rt.block_on(async {
create_context_sampled_data(sql.as_str(), partitions, samples)
.await
.unwrap()
});

c.bench_function(
format!("distinct query with {} partitions and {} samples per partition with limit {}", partitions, samples, limit).as_str(),
|b| b.iter(|| run(distinct_trace_id_1_partition_10_000_000_samples_limit_10.0.clone(),
distinct_trace_id_1_partition_10_000_000_samples_limit_10.1.clone())),
);
}

criterion_group!(
benches,
criterion_benchmark_limited_distinct,
criterion_benchmark_limited_distinct_sampled
);
criterion_main!(benches);
Loading