Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kafka Input Format for headers, key and payload parsing. #11630

Merged
merged 1 commit into from
Oct 7, 2021

Conversation

lokesh-lingarajan
Copy link
Contributor

@lokesh-lingarajan lokesh-lingarajan commented Aug 24, 2021

Description

Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
"type": "kafka", // New input format type
"headerLabelPrefix": "kafka.header.", // Label prefix for header columns, this will avoid collusions while merging columns
"recordTimestampLabelPrefix": "kafka.", // Kafka record's timestamp is made available in case payload does not carry timestamp
"headerFormat": // Header parser specifying that values are of type string
{
"type": "string"
},
"valueFormat": // Value parser from json parsing
{
"type": "json",
"flattenSpec": {
"useFieldDiscovery": true,
"fields": [...]
}
},
"keyFormat": // Key parser also from json parsing
{
"type": "json"
}
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

KafkaInputFormat Class:

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

This code has been tested locally(mac laptop) with production data and following are the performance numbers
Vanilla payload parser using json - 19 million records ingested/hour
New kafka input format with header parsing - 17 million records ingested/hour

Currently this code has been deployed in lab/stage environments and ingesting over 100 million records/day.

@xvrl

This PR has:

  • been self-reviewed.
  • added documentation for new or modified features or behaviors.
  • added Javadocs for most classes and all non-trivial methods. Linked related entities via Javadoc links.
  • added comments explaining the "why" and the intent of the code wherever would not be obvious for an unfamiliar reader.
  • added unit tests or modified existing tests to cover new code paths, ensuring the threshold for code coverage is met.
  • added integration tests.
  • been tested in a test Druid cluster.

@lokesh-lingarajan lokesh-lingarajan force-pushed the kifupstream branch 10 times, most recently from f387993 to 81e5ffd Compare August 25, 2021 21:55
@zachjsh zachjsh self-requested a review September 10, 2021 22:39
@xvrl xvrl requested a review from gianm September 14, 2021 22:24
Copy link
Contributor

@gianm gianm left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for your contribution!

Some comments on the API, specifically:

  • Since there's only one key column and one timestamp column, IMO it would be a cleaner API to have keyColumnName and timestampColumnName, specifying the whole name instead of prefixes. That way people don't need to know that .key and .timestamp will get added to the prefixes they specify. They can just specify the prefix and be off to the races. What do you think?
  • Please add JSON API documentation to development/extensions-core/kafka-ingestion.md.

Also: in addition to the tests you have here, could you add an end-to-end test to KafkaIndexTaskTest? That suite uses a real Kafka broker, producer, and consumer, so it's a good way to make sure everything stays working even when we update Kafka, refactor things, etc.

With the tests and docs added I would be supportive of merging this patch.

(Btw, for onlookers, see also a dev list thread at: https://lists.apache.org/thread.html/r4f87afb0010b5611814a00819faeb09e8f46374c21653d650a49c470%40%3Cdev.druid.apache.org%3E)

@lokesh-lingarajan lokesh-lingarajan force-pushed the kifupstream branch 6 times, most recently from 8b34c73 to b2eb4ed Compare September 28, 2021 21:48
@lokesh-lingarajan
Copy link
Contributor Author

@gianm - I have taken care of the review comments, could you please take another look at it ?

@lokesh-lingarajan lokesh-lingarajan force-pushed the kifupstream branch 2 times, most recently from e8f58ad to b6929e6 Compare September 30, 2021 04:14
docs/ingestion/data-formats.md Outdated Show resolved Hide resolved
Copy link
Member

@xvrl xvrl left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

one minor comment about noting the lack of sampling implementation, which means we should mark this as experimental for now, until it implements that and been battle-tested

@xvrl xvrl merged commit ad6609a into apache:master Oct 7, 2021
@xvrl xvrl deleted the kifupstream branch October 7, 2021 15:56
lokesh-lingarajan added a commit to confluentinc/druid that referenced this pull request Oct 12, 2021
Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(apache#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
    "type": "kafka",     // New input format type
    "headerLabelPrefix": "kafka.header.",   // Label prefix for header columns, this will avoid collusions while merging columns
    "recordTimestampLabelPrefix": "kafka.",  // Kafka record's timestamp is made available in case payload does not carry timestamp
    "headerFormat":  // Header parser specifying that values are of type string
    {
        "type": "string"
    },
    "valueFormat": // Value parser from json parsing
    {
        "type": "json",
        "flattenSpec": {
          "useFieldDiscovery": true,
          "fields": [...]
        }
    },
    "keyFormat":  // Key parser also from json parsing
    {
        "type": "json"
    }
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

(cherry picked from commit ad6609a)
xvrl pushed a commit to confluentinc/druid that referenced this pull request Oct 13, 2021
…load parsing (apache#11630) (#52)

Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(apache#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
    "type": "kafka",     // New input format type
    "headerLabelPrefix": "kafka.header.",   // Label prefix for header columns, this will avoid collusions while merging columns
    "recordTimestampLabelPrefix": "kafka.",  // Kafka record's timestamp is made available in case payload does not carry timestamp
    "headerFormat":  // Header parser specifying that values are of type string
    {
        "type": "string"
    },
    "valueFormat": // Value parser from json parsing
    {
        "type": "json",
        "flattenSpec": {
          "useFieldDiscovery": true,
          "fields": [...]
        }
    },
    "keyFormat":  // Key parser also from json parsing
    {
        "type": "json"
    }
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

(cherry picked from commit ad6609a)
harinirajendran pushed a commit to confluentinc/druid that referenced this pull request Feb 23, 2022
…load parsing (apache#11630) (#52)

Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(apache#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
    "type": "kafka",     // New input format type
    "headerLabelPrefix": "kafka.header.",   // Label prefix for header columns, this will avoid collusions while merging columns
    "recordTimestampLabelPrefix": "kafka.",  // Kafka record's timestamp is made available in case payload does not carry timestamp
    "headerFormat":  // Header parser specifying that values are of type string
    {
        "type": "string"
    },
    "valueFormat": // Value parser from json parsing
    {
        "type": "json",
        "flattenSpec": {
          "useFieldDiscovery": true,
          "fields": [...]
        }
    },
    "keyFormat":  // Key parser also from json parsing
    {
        "type": "json"
    }
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

(cherry picked from commit ad6609a)
@abhishekagarwal87 abhishekagarwal87 added this to the 0.23.0 milestone May 11, 2022
kkonstantine pushed a commit to confluentinc/druid that referenced this pull request Sep 1, 2022
…load parsing (apache#11630) (#52)

Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(apache#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
    "type": "kafka",     // New input format type
    "headerLabelPrefix": "kafka.header.",   // Label prefix for header columns, this will avoid collusions while merging columns
    "recordTimestampLabelPrefix": "kafka.",  // Kafka record's timestamp is made available in case payload does not carry timestamp
    "headerFormat":  // Header parser specifying that values are of type string
    {
        "type": "string"
    },
    "valueFormat": // Value parser from json parsing
    {
        "type": "json",
        "flattenSpec": {
          "useFieldDiscovery": true,
          "fields": [...]
        }
    },
    "keyFormat":  // Key parser also from json parsing
    {
        "type": "json"
    }
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

(cherry picked from commit ad6609a)
kkonstantine pushed a commit to confluentinc/druid that referenced this pull request Sep 1, 2022
…load parsing (apache#11630) (#52)

Today we ingest a number of high cardinality metrics into Druid across dimensions. These metrics are rolled up on a per minute basis, and are very useful when looking at metrics on a partition or client basis. Events is another class of data that provides useful information about a particular incident/scenario inside a Kafka cluster. Events themselves are carried inside kafka payload, but nonetheless there are some very useful metadata that is carried in kafka headers that can serve as useful dimension for aggregation and in turn bringing better insights.

PR(apache#10730) introduced support of Kafka headers in InputFormats.

We still need an input format to parse out the headers and translate those into relevant columns in Druid. Until that’s implemented, none of the information available in the Kafka message headers would be exposed. So first there is a need to write an input format that can parse headers in any given format(provided we support the format) like we parse payloads today. Apart from headers there is also some useful information present in the key portion of the kafka record. We also need a way to expose the data present in the key as druid columns. We need a generic way to express at configuration time what attributes from headers, key and payload need to be ingested into druid. We need to keep the design generic enough so that users can specify different parsers for headers, key and payload.

This PR is designed to solve the above by providing wrapper around any existing input formats and merging the data into a single unified Druid row.

Lets look at a sample input format from the above discussion

"inputFormat":
{
    "type": "kafka",     // New input format type
    "headerLabelPrefix": "kafka.header.",   // Label prefix for header columns, this will avoid collusions while merging columns
    "recordTimestampLabelPrefix": "kafka.",  // Kafka record's timestamp is made available in case payload does not carry timestamp
    "headerFormat":  // Header parser specifying that values are of type string
    {
        "type": "string"
    },
    "valueFormat": // Value parser from json parsing
    {
        "type": "json",
        "flattenSpec": {
          "useFieldDiscovery": true,
          "fields": [...]
        }
    },
    "keyFormat":  // Key parser also from json parsing
    {
        "type": "json"
    }
}

Since we have independent sections for header, key and payload, it will enable parsing each section with its own parser, eg., headers coming in as string and payload as json.

KafkaInputFormat will be the uber class extending inputFormat interface and will be responsible for creating individual parsers for header, key and payload, blend the data resolving conflicts in columns and generating a single unified InputRow for Druid ingestion.

"headerFormat" will allow users to plug parser type for the header values and will add default header prefix as "kafka.header."(can be overridden) for attributes to avoid collision while merging attributes with payload.

Kafka payload parser will be responsible for parsing the Value portion of the Kafka record. This is where most of the data will come from and we should be able to plugin existing parser. One thing to note here is that if batching is performed, then the code is augmenting header and key values to every record in the batch.

Kafka key parser will handle parsing Key portion of the Kafka record and will ingest the Key with dimension name as "kafka.key".

This is the class that orchestrates sending the consumerRecord to each parser, retrieve rows, merge the columns into one final row for Druid consumption. KafkaInputformat should make sure to release the resources that gets allocated as a part of reader in CloseableIterator<InputRow> during normal and exception cases.

During conflicts in dimension/metrics names, the code will prefer dimension names from payload and ignore the dimension either from headers/key. This is done so that existing input formats can be easily migrated to this new format without worrying about losing information.

(cherry picked from commit ad6609a)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants