Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[#2587] feat(spark-connector): Support iceberg metadataColumns #3180

Merged
merged 2 commits into from
Apr 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,23 +5,33 @@
package com.datastrato.gravitino.integration.test.spark.iceberg;

import com.datastrato.gravitino.integration.test.spark.SparkCommonIT;
import com.datastrato.gravitino.integration.test.util.spark.SparkMetadataColumnInfo;
import com.datastrato.gravitino.integration.test.util.spark.SparkTableInfo;
import com.datastrato.gravitino.integration.test.util.spark.SparkTableInfoChecker;
import com.google.common.collect.ImmutableList;
import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import org.apache.hadoop.fs.Path;
import org.apache.spark.sql.Column;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.catalyst.analysis.NoSuchFunctionException;
import org.apache.spark.sql.catalyst.analysis.NoSuchNamespaceException;
import org.apache.spark.sql.catalyst.analysis.NoSuchTableException;
import org.apache.spark.sql.catalyst.expressions.Literal;
import org.apache.spark.sql.connector.catalog.CatalogPlugin;
import org.apache.spark.sql.connector.catalog.FunctionCatalog;
import org.apache.spark.sql.connector.catalog.Identifier;
import org.apache.spark.sql.connector.catalog.functions.UnboundFunction;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

Expand Down Expand Up @@ -196,6 +206,186 @@ void testIcebergPartitions() {
});
}

@Test
void testIcebergMetadataColumns() throws NoSuchTableException {
testMetadataColumns();
testSpecAndPartitionMetadataColumns();
testPositionMetadataColumn();
testPartitionMetadataColumnWithUnPartitionedTable();
testFileMetadataColumn();
testDeleteMetadataColumn();
}

private void testMetadataColumns() {
String tableName = "test_metadata_columns";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
createTableSQL = createTableSQL + " PARTITIONED BY (name);";
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);
}

private void testSpecAndPartitionMetadataColumns() {
String tableName = "test_spec_partition";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
createTableSQL = createTableSQL + " PARTITIONED BY (name);";
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);

String insertData = String.format("INSERT into %s values(2,'a', 1);", tableName);
sql(insertData);

String expectedMetadata = "0,a";
String getMetadataSQL =
String.format("SELECT _spec_id, _partition FROM %s ORDER BY _spec_id", tableName);
List<String> queryResult = getTableMetadata(getMetadataSQL);
Assertions.assertEquals(1, queryResult.size());
Assertions.assertEquals(expectedMetadata, queryResult.get(0));
}

private void testPositionMetadataColumn() throws NoSuchTableException {
String tableName = "test_position_metadata_column";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
createTableSQL = createTableSQL + " PARTITIONED BY (name);";
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);

List<Integer> ids = new ArrayList<>();
for (int id = 0; id < 200; id++) {
ids.add(id);
}
Dataset<Row> df =
getSparkSession()
.createDataset(ids, Encoders.INT())
.withColumnRenamed("value", "id")
.withColumn("name", new Column(Literal.create("a", DataTypes.StringType)))
.withColumn("age", new Column(Literal.create(1, DataTypes.IntegerType)));
df.coalesce(1).writeTo(tableName).append();

Assertions.assertEquals(200, getSparkSession().table(tableName).count());

String getMetadataSQL = String.format("SELECT _pos FROM %s", tableName);
List<String> expectedRows = ids.stream().map(String::valueOf).collect(Collectors.toList());
List<String> queryResult = getTableMetadata(getMetadataSQL);
Assertions.assertEquals(expectedRows.size(), queryResult.size());
Assertions.assertArrayEquals(expectedRows.toArray(), queryResult.toArray());
}

private void testPartitionMetadataColumnWithUnPartitionedTable() {
String tableName = "test_position_metadata_column_in_unpartitioned_table";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
metadataColumns[1] =
new SparkMetadataColumnInfo(
"_partition", DataTypes.createStructType(new StructField[] {}), true);
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);

String insertData = String.format("INSERT into %s values(2,'a', 1);", tableName);
sql(insertData);

String getMetadataSQL = String.format("SELECT _partition FROM %s", tableName);
Assertions.assertEquals(1, getSparkSession().sql(getMetadataSQL).count());
Row row = getSparkSession().sql(getMetadataSQL).collectAsList().get(0);
Assertions.assertNotNull(row);
Assertions.assertNull(row.get(0));
}

private void testFileMetadataColumn() {
String tableName = "test_file_metadata_column";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
createTableSQL = createTableSQL + " PARTITIONED BY (name);";
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);

String insertData = String.format("INSERT into %s values(2,'a', 1);", tableName);
sql(insertData);

String getMetadataSQL = String.format("SELECT _file FROM %s", tableName);
List<String> queryResult = getTableMetadata(getMetadataSQL);
Assertions.assertEquals(1, queryResult.size());
Assertions.assertTrue(queryResult.get(0).contains(tableName));
}

private void testDeleteMetadataColumn() {
String tableName = "test_delete_metadata_column";
dropTableIfExists(tableName);
String createTableSQL = getCreateSimpleTableString(tableName);
createTableSQL = createTableSQL + " PARTITIONED BY (name);";
sql(createTableSQL);

SparkTableInfo tableInfo = getTableInfo(tableName);

SparkMetadataColumnInfo[] metadataColumns = getIcebergMetadataColumns();
SparkTableInfoChecker checker =
SparkTableInfoChecker.create()
.withName(tableName)
.withColumns(getSimpleTableColumn())
.withMetadataColumns(metadataColumns);
checker.check(tableInfo);

String insertData = String.format("INSERT into %s values(2,'a', 1);", tableName);
sql(insertData);

String getMetadataSQL = String.format("SELECT _deleted FROM %s", tableName);
List<String> queryResult = getTableMetadata(getMetadataSQL);
Assertions.assertEquals(1, queryResult.size());
Assertions.assertEquals("false", queryResult.get(0));

sql(getDeleteSql(tableName, "1 = 1"));

List<String> queryResult1 = getTableMetadata(getMetadataSQL);
Assertions.assertEquals(0, queryResult1.size());
}

private List<SparkTableInfo.SparkColumnInfo> getIcebergSimpleTableColumn() {
return Arrays.asList(
SparkTableInfo.SparkColumnInfo.of("id", DataTypes.IntegerType, "id comment"),
Expand All @@ -212,4 +402,18 @@ private String getCreateIcebergSimpleTableString(String tableName) {
"CREATE TABLE %s (id INT COMMENT 'id comment', name STRING COMMENT '', ts TIMESTAMP)",
tableName);
}

private SparkMetadataColumnInfo[] getIcebergMetadataColumns() {
return new SparkMetadataColumnInfo[] {
new SparkMetadataColumnInfo("_spec_id", DataTypes.IntegerType, false),
new SparkMetadataColumnInfo(
"_partition",
DataTypes.createStructType(
new StructField[] {DataTypes.createStructField("name", DataTypes.StringType, true)}),
true),
new SparkMetadataColumnInfo("_file", DataTypes.StringType, false),
new SparkMetadataColumnInfo("_pos", DataTypes.LongType, false),
new SparkMetadataColumnInfo("_deleted", DataTypes.BooleanType, false)
};
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
/*
* Copyright 2024 Datastrato Pvt Ltd.
* This software is licensed under the Apache License version 2.
*/

package com.datastrato.gravitino.integration.test.util.spark;

import org.apache.spark.sql.connector.catalog.MetadataColumn;
import org.apache.spark.sql.types.DataType;

public class SparkMetadataColumnInfo implements MetadataColumn {
private final String name;
private final DataType dataType;
private final boolean isNullable;

public SparkMetadataColumnInfo(String name, DataType dataType, boolean isNullable) {
this.name = name;
this.dataType = dataType;
this.isNullable = isNullable;
}

public String name() {
return this.name;
}

public DataType dataType() {
return this.dataType;
}

public boolean isNullable() {
return this.isNullable;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import javax.ws.rs.NotSupportedException;
import lombok.Data;
import org.apache.commons.lang3.StringUtils;
import org.apache.spark.sql.connector.catalog.SupportsMetadataColumns;
import org.apache.spark.sql.connector.catalog.TableCatalog;
import org.apache.spark.sql.connector.expressions.ApplyTransform;
import org.apache.spark.sql.connector.expressions.BucketTransform;
Expand All @@ -42,6 +43,7 @@ public class SparkTableInfo {
private Transform bucket;
private List<Transform> partitions = new ArrayList<>();
private Set<String> partitionColumnNames = new HashSet<>();
private SparkMetadataColumnInfo[] metadataColumns;

public SparkTableInfo() {}

Expand Down Expand Up @@ -132,6 +134,18 @@ static SparkTableInfo create(SparkBaseTable baseTable) {
"Doesn't support Spark transform: " + transform.name());
}
});
if (baseTable instanceof SupportsMetadataColumns) {
SupportsMetadataColumns supportsMetadataColumns = (SupportsMetadataColumns) baseTable;
sparkTableInfo.metadataColumns =
Arrays.stream(supportsMetadataColumns.metadataColumns())
.map(
metadataColumn ->
new SparkMetadataColumnInfo(
metadataColumn.name(),
metadataColumn.dataType(),
metadataColumn.isNullable()))
.toArray(SparkMetadataColumnInfo[]::new);
}
return sparkTableInfo;
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ private enum CheckField {
BUCKET,
COMMENT,
TABLE_PROPERTY,
METADATA_COLUMN
}

public SparkTableInfoChecker withName(String name) {
Expand Down Expand Up @@ -135,6 +136,12 @@ public SparkTableInfoChecker withTableProperties(Map<String, String> properties)
return this;
}

public SparkTableInfoChecker withMetadataColumns(SparkMetadataColumnInfo[] metadataColumns) {
this.expectedTableInfo.setMetadataColumns(metadataColumns);
this.checkFields.add(CheckField.METADATA_COLUMN);
return this;
}

public void check(SparkTableInfo realTableInfo) {
checkFields.stream()
.forEach(
Expand All @@ -156,6 +163,22 @@ public void check(SparkTableInfo realTableInfo) {
case BUCKET:
Assertions.assertEquals(expectedTableInfo.getBucket(), realTableInfo.getBucket());
break;
case METADATA_COLUMN:
Assertions.assertEquals(
expectedTableInfo.getMetadataColumns().length,
realTableInfo.getMetadataColumns().length);
for (int i = 0; i < expectedTableInfo.getMetadataColumns().length; i++) {
Assertions.assertEquals(
expectedTableInfo.getMetadataColumns()[i].name(),
realTableInfo.getMetadataColumns()[i].name());
Assertions.assertEquals(
expectedTableInfo.getMetadataColumns()[i].dataType(),
realTableInfo.getMetadataColumns()[i].dataType());
Assertions.assertEquals(
expectedTableInfo.getMetadataColumns()[i].isNullable(),
realTableInfo.getMetadataColumns()[i].isNullable());
}
break;
case COMMENT:
Assertions.assertEquals(
expectedTableInfo.getComment(), realTableInfo.getComment());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,11 @@ protected List<String> getQueryData(String querySql) {
.collect(Collectors.toList());
}

// columns data are joined by ','
protected List<String> getTableMetadata(String getTableMetadataSql) {
return getQueryData(getTableMetadataSql);
}

// Create SparkTableInfo from SparkBaseTable retrieved from LogicalPlan.
protected SparkTableInfo getTableInfo(String tableName) {
Dataset ds = getSparkSession().sql("DESC TABLE EXTENDED " + tableName);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,14 @@
import com.datastrato.gravitino.spark.connector.SparkTransformConverter;
import com.datastrato.gravitino.spark.connector.table.SparkBaseTable;
import org.apache.spark.sql.connector.catalog.Identifier;
import org.apache.spark.sql.connector.catalog.MetadataColumn;
import org.apache.spark.sql.connector.catalog.SupportsDelete;
import org.apache.spark.sql.connector.catalog.SupportsMetadataColumns;
import org.apache.spark.sql.connector.catalog.TableCatalog;
import org.apache.spark.sql.sources.Filter;

public class SparkIcebergTable extends SparkBaseTable implements SupportsDelete {
public class SparkIcebergTable extends SparkBaseTable
implements SupportsDelete, SupportsMetadataColumns {

public SparkIcebergTable(
Identifier identifier,
Expand All @@ -39,4 +42,9 @@ public boolean canDeleteWhere(Filter[] filters) {
public void deleteWhere(Filter[] filters) {
((SupportsDelete) getSparkTable()).deleteWhere(filters);
}

@Override
public MetadataColumn[] metadataColumns() {
return ((SupportsMetadataColumns) getSparkTable()).metadataColumns();
}
}
Loading