Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Python BucketingModule bind() with grad_req = 'add' #13984

Merged
merged 2 commits into from
Jan 27, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions python/mxnet/module/bucketing_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,7 @@ def __init__(self, sym_gen, default_bucket_key=None, logger=logging,
self._curr_bucket_key = None
self._params_dirty = False
self._monitor = None
self._grad_req = None

def _reset_bind(self):
"""Internal utility function to reset binding."""
Expand Down Expand Up @@ -331,6 +332,7 @@ def bind(self, data_shapes, label_shapes=None, for_training=True,
self.for_training = for_training
self.inputs_need_grad = inputs_need_grad
self.binded = True
self._grad_req = grad_req

symbol, data_names, label_names = self._call_sym_gen(self._default_bucket_key)
module = Module(symbol, data_names, label_names, logger=self.logger,
Expand All @@ -340,7 +342,7 @@ def bind(self, data_shapes, label_shapes=None, for_training=True,
group2ctxs=self._group2ctxs,
compression_params=self._compression_params)
module.bind(data_shapes, label_shapes, for_training, inputs_need_grad,
force_rebind=False, shared_module=None, grad_req=grad_req)
force_rebind=False, shared_module=None, grad_req=self._grad_req)
self._curr_module = module
self._curr_bucket_key = self._default_bucket_key
self._buckets[self._default_bucket_key] = module
Expand Down Expand Up @@ -373,7 +375,8 @@ def switch_bucket(self, bucket_key, data_shapes, label_shapes=None):
compression_params=self._compression_params)
module.bind(data_shapes, label_shapes, self._curr_module.for_training,
self._curr_module.inputs_need_grad,
force_rebind=False, shared_module=self._buckets[self._default_bucket_key])
force_rebind=False, shared_module=self._buckets[self._default_bucket_key],
grad_req=self._grad_req)
if self._monitor is not None:
module.install_monitor(self._monitor)
self._buckets[bucket_key] = module
Expand Down
42 changes: 42 additions & 0 deletions tests/python/unittest/test_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -874,6 +874,48 @@ def empty_fn(*args, **kwargs):
train_data = MockTrainData(batches=2)
mod.fit(train_data, num_epoch=1)

@with_seed()
def test_bucket_module_grad_req():
batch_size = 2
def sym_gen(_):
data = mx.symbol.Variable('data')
weight = mx.symbol.Variable('a', shape=(1,), init=mx.init.One())
sym = mx.sym.make_loss(mx.sym.broadcast_mul(data, weight))
return sym, ('data',), None

mod = mx.mod.BucketingModule(sym_gen=sym_gen, default_bucket_key=10)
mod.bind(data_shapes=[['data', (batch_size, )]], for_training=True, grad_req='write')
mod.init_params()

mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))],
label=None,
provide_data=[mx.io.DataDesc(name='data', shape=(batch_size, ), layout='N')],
bucket_key=10))
assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size)

mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))],
label=None,
provide_data=[mx.io.DataDesc(name='data', shape=(batch_size, ), layout='N')],
bucket_key=5))
assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size)

mod = mx.mod.BucketingModule(sym_gen=sym_gen, default_bucket_key=10)
mod.bind(data_shapes=[['data', (batch_size, )]], for_training=True, grad_req='add')
mod.init_params()

mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))],
label=None,
provide_data=[mx.io.DataDesc(name='data', shape=(batch_size,), layout='N')],
bucket_key=10))
assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == batch_size)

mod.forward_backward(mx.io.DataBatch(data=[mx.nd.ones((batch_size,))],
label=None,
provide_data=[mx.io.DataDesc(name='data', shape=(batch_size,), layout='N')],
bucket_key=5))
assert mod._curr_module._grad_req == 'add'
assert(mod._curr_module._exec_group.execs[0].grad_dict['a'].asscalar() == 2 * batch_size)


if __name__ == '__main__':
import nose
Expand Down