Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x][BUGFIX]Fix MKLDNN BatchNorm with even number of channels (#19150) #19299 #19425 #19445

Merged
merged 3 commits into from
Oct 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 6 additions & 10 deletions src/operator/nn/mkldnn/mkldnn_batch_norm-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -145,13 +145,6 @@ static MKLDNNBNForward &GetBNForward(const BatchNormParam& param,
return it->second;
}

template<typename DType>
static MKLDNNBNForward &GetBNForward(const BatchNormParam& param,
const OpContext &ctx, const NDArray &in_data,
mkldnn::normalization_flags flags) {
return GetBNForward<DType>(param, ctx, in_data.GetMKLDNNData(), flags);
}

template <typename DType>
void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
const std::vector<NDArray> &inputs, const std::vector<OpReqType> &req,
Expand Down Expand Up @@ -182,8 +175,11 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
aux_states,
ctx.is_train && !param.use_global_stats,
fuse_relu);
const NDArray &data = in_data[batchnorm::kData];
auto &fwd = GetBNForward<DType>(param, ctx, data, flags);
NDArray &data = in_data[batchnorm::kData];
if (data.IsMKLDNNData() && data.IsView())
data = data.Reorder2Default();
auto data_mem = data.GetMKLDNNData();
auto &fwd = GetBNForward<DType>(param, ctx, data_mem, flags);

// for output memory
auto out_mem = const_cast<NDArray &>(out).CreateMKLDNNData(fwd.GetPd().dst_desc());
Expand Down Expand Up @@ -221,7 +217,7 @@ void MKLDNNBatchNormForward(const nnvm::NodeAttrs &attrs, const OpContext &ctx,
}

mkldnn_args_map_t net_args;
net_args[MKLDNN_ARG_SRC] = *data.GetMKLDNNData();
net_args[MKLDNN_ARG_SRC] = *data_mem;
net_args[MKLDNN_ARG_SCALE_SHIFT] = weight_mem;
net_args[MKLDNN_ARG_DST] = *out_mem;
if (fuse_relu) {
Expand Down
2 changes: 1 addition & 1 deletion tests/python/mkl/test_mkldnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@ def test_mkldnn_sum_inplace_with_cpu_layout():
@with_seed()
def test_batchnorm():
def check_batchnorm_training(stype):
for shape in [(2, 3), (2, 3, 2, 2)]:
for shape in [(2, 3), (2, 4), (2, 3, 2, 2), (2, 4, 2, 2)]:
data_tmp = np.random.normal(-0.1, 0.1, size=shape)
s = shape[1],
gamma = np.ones(s)
Expand Down
35 changes: 35 additions & 0 deletions tests/python/unittest/test_gluon.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

import mxnet as mx
from mxnet import gluon
from mxnet import init
from mxnet.gluon import nn
from mxnet.base import py_str, MXNetError
from mxnet.test_utils import assert_almost_equal, default_context
Expand Down Expand Up @@ -2179,6 +2180,40 @@ def hybrid_forward(self, F, x):
check_layer_forward_withinput(net, x)


@with_seed()
def test_batchnorm_chnls():
chn_list = [1024, 512, 256, 128, 64, 45, 32, 16, 3]
class Net(gluon.HybridBlock):
def __init__(self,
chn_num,
norm_kwargs=None,
in_channels=3,
**kwargs):
super(Net, self).__init__(**kwargs)
self.in_channels = in_channels
self.conv1 = gluon.nn.Conv3D(
in_channels=self.in_channels,
channels=chn_num,
kernel_size=(1, 7, 7),
strides=(1, 2, 2),
padding=(0, 3, 3),
use_bias=False,
)
self.bn1 = gluon.nn.BatchNorm(in_channels=chn_num, **({} if norm_kwargs is None else norm_kwargs))

def hybrid_forward(self, F, x):
"""Hybrid forward of R2+1D net"""
conv = self.conv1(x)
out = self.bn1(conv)
return out

for i in range(len(chn_list)):
net = Net(chn_list[i])
net.initialize(init=init.Constant(1))
x = mx.nd.zeros((1, 3, 8, 160, 160))
net(x).asnumpy()


@with_seed()
def test_concat():
chn_list = [16, 64]
Expand Down