Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #309

Merged
merged 3 commits into from
May 7, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

[![Join the chat at https://gitter.im/interestinglab_waterdrop/Lobby](https://badges.gitter.im/interestinglab_waterdrop/Lobby.svg)](https://gitter.im/interestinglab_waterdrop/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

Waterdrop 是一个`非常易用`,`高性能`,能够应对`海量数据`的`实时`数据处理产品,构建于Apache Spark之上
Waterdrop 是一个`非常易用`,`高性能`、支持`实时流式`和`离线批处理`的`海量数据`处理产品,架构于`Apache Spark` 和 `Apache Flink`之上

---

Expand Down Expand Up @@ -85,12 +85,15 @@ Elasticsearch, File, Hdfs, Jdbc, Kafka, Mysql, S3, Stdout, 自行开发的Output

## 环境依赖

需要以下Spark集群环境的任意一种:
1. java运行环境,java >= 8

2. 如果您要在集群环境中运行Waterdrop,那么需要以下Spark集群环境的任意一种:

* Spark on Yarn
* Spark Standalone
* Spark on Mesos

如果您的数据量较小或者只是做功能验证,也可以仅使用local模式启动,无需集群环境。
如果您的数据量较小或者只是做功能验证,也可以仅使用`local`模式启动,无需集群环境,Waterdrop支持单机运行

## 文档

Expand Down
9 changes: 6 additions & 3 deletions docs/zh-cn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

[![Join the chat at https://gitter.im/interestinglab_waterdrop/Lobby](https://badges.gitter.im/interestinglab_waterdrop/Lobby.svg)](https://gitter.im/interestinglab_waterdrop/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

Waterdrop 是一个`非常易用`,`高性能`,能够应对`海量数据`的`实时`数据处理产品,构建于Apache Spark之上
Waterdrop 是一个`非常易用`,`高性能`、支持`实时流式`和`离线批处理`的`海量数据`处理产品,架构于`Apache Spark` 和 `Apache Flink`之上

---

Expand Down Expand Up @@ -78,12 +78,15 @@ Elasticsearch, File, Hdfs, Jdbc, Kafka, Mysql, S3, Stdout, 自行开发的Output

## 环境依赖

需要以下Spark集群环境的任意一种:
1. java运行环境,java >= 8

2. 如果您要在集群环境中运行Waterdrop,那么需要以下Spark集群环境的任意一种:

* Spark on Yarn
* Spark Standalone
* Spark on Mesos

如果您的数据量较小或者只是做功能验证,也可以仅使用local模式启动,无需集群环境。
如果您的数据量较小或者只是做功能验证,也可以仅使用`local`模式启动,无需集群环境,Waterdrop支持单机运行

## [配置/文档](zh-cn/configuration/base)

Expand Down