-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-24365][SQL] Add Data Source write benchmark
## What changes were proposed in this pull request? Add Data Source write benchmark. So that it would be easier to measure the writer performance. Author: Gengliang Wang <[email protected]> Closes #21409 from gengliangwang/parquetWriteBenchmark.
- Loading branch information
1 parent
900bc1f
commit f489388
Showing
1 changed file
with
149 additions
and
0 deletions.
There are no files selected for viewing
149 changes: 149 additions & 0 deletions
149
...re/src/test/scala/org/apache/spark/sql/execution/benchmark/DataSourceWriteBenchmark.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.spark.sql.execution.benchmark | ||
|
||
import org.apache.spark.SparkConf | ||
import org.apache.spark.sql.SparkSession | ||
import org.apache.spark.sql.internal.SQLConf | ||
import org.apache.spark.util.Benchmark | ||
|
||
/** | ||
* Benchmark to measure data source write performance. | ||
* By default it measures 4 data source format: Parquet, ORC, JSON, CSV: | ||
* spark-submit --class <this class> <spark sql test jar> | ||
* To measure specified formats, run it with arguments: | ||
* spark-submit --class <this class> <spark sql test jar> format1 [format2] [...] | ||
*/ | ||
object DataSourceWriteBenchmark { | ||
val conf = new SparkConf() | ||
.setAppName("DataSourceWriteBenchmark") | ||
.setIfMissing("spark.master", "local[1]") | ||
.set("spark.sql.parquet.compression.codec", "snappy") | ||
.set("spark.sql.orc.compression.codec", "snappy") | ||
|
||
val spark = SparkSession.builder.config(conf).getOrCreate() | ||
|
||
// Set default configs. Individual cases will change them if necessary. | ||
spark.conf.set(SQLConf.WHOLESTAGE_CODEGEN_ENABLED.key, "true") | ||
|
||
val tempTable = "temp" | ||
val numRows = 1024 * 1024 * 15 | ||
|
||
def withTempTable(tableNames: String*)(f: => Unit): Unit = { | ||
try f finally tableNames.foreach(spark.catalog.dropTempView) | ||
} | ||
|
||
def withTable(tableNames: String*)(f: => Unit): Unit = { | ||
try f finally { | ||
tableNames.foreach { name => | ||
spark.sql(s"DROP TABLE IF EXISTS $name") | ||
} | ||
} | ||
} | ||
|
||
def writeNumeric(table: String, format: String, benchmark: Benchmark, dataType: String): Unit = { | ||
spark.sql(s"create table $table(id $dataType) using $format") | ||
benchmark.addCase(s"Output Single $dataType Column") { _ => | ||
spark.sql(s"INSERT OVERWRITE TABLE $table SELECT CAST(id AS $dataType) AS c1 FROM $tempTable") | ||
} | ||
} | ||
|
||
def writeIntString(table: String, format: String, benchmark: Benchmark): Unit = { | ||
spark.sql(s"CREATE TABLE $table(c1 INT, c2 STRING) USING $format") | ||
benchmark.addCase("Output Int and String Column") { _ => | ||
spark.sql(s"INSERT OVERWRITE TABLE $table SELECT CAST(id AS INT) AS " + | ||
s"c1, CAST(id AS STRING) AS c2 FROM $tempTable") | ||
} | ||
} | ||
|
||
def writePartition(table: String, format: String, benchmark: Benchmark): Unit = { | ||
spark.sql(s"CREATE TABLE $table(p INT, id INT) USING $format PARTITIONED BY (p)") | ||
benchmark.addCase("Output Partitions") { _ => | ||
spark.sql(s"INSERT OVERWRITE TABLE $table SELECT CAST(id AS INT) AS id," + | ||
s" CAST(id % 2 AS INT) AS p FROM $tempTable") | ||
} | ||
} | ||
|
||
def writeBucket(table: String, format: String, benchmark: Benchmark): Unit = { | ||
spark.sql(s"CREATE TABLE $table(c1 INT, c2 INT) USING $format CLUSTERED BY (c2) INTO 2 BUCKETS") | ||
benchmark.addCase("Output Buckets") { _ => | ||
spark.sql(s"INSERT OVERWRITE TABLE $table SELECT CAST(id AS INT) AS " + | ||
s"c1, CAST(id AS INT) AS c2 FROM $tempTable") | ||
} | ||
} | ||
|
||
def main(args: Array[String]): Unit = { | ||
val tableInt = "tableInt" | ||
val tableDouble = "tableDouble" | ||
val tableIntString = "tableIntString" | ||
val tablePartition = "tablePartition" | ||
val tableBucket = "tableBucket" | ||
val formats: Seq[String] = if (args.isEmpty) { | ||
Seq("Parquet", "ORC", "JSON", "CSV") | ||
} else { | ||
args | ||
} | ||
/* | ||
Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz | ||
Parquet writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative | ||
------------------------------------------------------------------------------------------------ | ||
Output Single Int Column 1815 / 1932 8.7 115.4 1.0X | ||
Output Single Double Column 1877 / 1878 8.4 119.3 1.0X | ||
Output Int and String Column 6265 / 6543 2.5 398.3 0.3X | ||
Output Partitions 4067 / 4457 3.9 258.6 0.4X | ||
Output Buckets 5608 / 5820 2.8 356.6 0.3X | ||
ORC writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative | ||
------------------------------------------------------------------------------------------------ | ||
Output Single Int Column 1201 / 1239 13.1 76.3 1.0X | ||
Output Single Double Column 1542 / 1600 10.2 98.0 0.8X | ||
Output Int and String Column 6495 / 6580 2.4 412.9 0.2X | ||
Output Partitions 3648 / 3842 4.3 231.9 0.3X | ||
Output Buckets 5022 / 5145 3.1 319.3 0.2X | ||
JSON writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative | ||
------------------------------------------------------------------------------------------------ | ||
Output Single Int Column 1988 / 2093 7.9 126.4 1.0X | ||
Output Single Double Column 2854 / 2911 5.5 181.4 0.7X | ||
Output Int and String Column 6467 / 6653 2.4 411.1 0.3X | ||
Output Partitions 4548 / 5055 3.5 289.1 0.4X | ||
Output Buckets 5664 / 5765 2.8 360.1 0.4X | ||
CSV writer benchmark: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative | ||
------------------------------------------------------------------------------------------------ | ||
Output Single Int Column 3025 / 3190 5.2 192.3 1.0X | ||
Output Single Double Column 3575 / 3634 4.4 227.3 0.8X | ||
Output Int and String Column 7313 / 7399 2.2 464.9 0.4X | ||
Output Partitions 5105 / 5190 3.1 324.6 0.6X | ||
Output Buckets 6986 / 6992 2.3 444.1 0.4X | ||
*/ | ||
withTempTable(tempTable) { | ||
spark.range(numRows).createOrReplaceTempView(tempTable) | ||
formats.foreach { format => | ||
withTable(tableInt, tableDouble, tableIntString, tablePartition, tableBucket) { | ||
val benchmark = new Benchmark(s"$format writer benchmark", numRows) | ||
writeNumeric(tableInt, format, benchmark, "Int") | ||
writeNumeric(tableDouble, format, benchmark, "Double") | ||
writeIntString(tableIntString, format, benchmark) | ||
writePartition(tablePartition, format, benchmark) | ||
writeBucket(tableBucket, format, benchmark) | ||
benchmark.run() | ||
} | ||
} | ||
} | ||
} | ||
} |