Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-23377][ML] Fixes Bucketizer with multiple columns persistence bug #20594

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions mllib/src/main/scala/org/apache/spark/ml/feature/Bucketizer.scala
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,10 @@ package org.apache.spark.ml.feature

import java.{util => ju}

import org.json4s.JsonDSL._
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._

import org.apache.spark.SparkException
import org.apache.spark.annotation.Since
import org.apache.spark.ml.Model
Expand Down Expand Up @@ -213,6 +217,8 @@ final class Bucketizer @Since("1.4.0") (@Since("1.4.0") override val uid: String
override def copy(extra: ParamMap): Bucketizer = {
defaultCopy[Bucketizer](extra).setParent(parent)
}

override def write: MLWriter = new Bucketizer.BucketizerWriter(this)
}

@Since("1.6.0")
Expand Down Expand Up @@ -290,6 +296,28 @@ object Bucketizer extends DefaultParamsReadable[Bucketizer] {
}
}


private[Bucketizer] class BucketizerWriter(instance: Bucketizer) extends MLWriter {

override protected def saveImpl(path: String): Unit = {
// SPARK-23377: The default params will be saved and loaded as user-supplied params.
// Once `inputCols` is set, the default value of `outputCol` param causes the error
// when checking exclusive params. As a temporary to fix it, we skip the default value
// of `outputCol` if `inputCols` is set when saving the metadata.
// TODO: If we modify the persistence mechanism later to better handle default params,
// we can get rid of this.
var paramWithoutOutputCol: Option[JValue] = None
if (instance.isSet(instance.inputCols)) {
val params = instance.extractParamMap().toSeq
val jsonParams = params.filter(_.param != instance.outputCol).map { case ParamPair(p, v) =>
p.name -> parse(p.jsonEncode(v))
}.toList
paramWithoutOutputCol = Some(render(jsonParams))
}
DefaultParamsWriter.saveMetadata(instance, path, sc, paramMap = paramWithoutOutputCol)
}
}

@Since("1.6.0")
override def load(path: String): Bucketizer = super.load(path)
}
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,10 @@

package org.apache.spark.ml.feature

import org.json4s.JsonDSL._
import org.json4s.JValue
import org.json4s.jackson.JsonMethods._

import org.apache.spark.annotation.Since
import org.apache.spark.internal.Logging
import org.apache.spark.ml._
Expand Down Expand Up @@ -249,11 +253,35 @@ final class QuantileDiscretizer @Since("1.6.0") (@Since("1.6.0") override val ui

@Since("1.6.0")
override def copy(extra: ParamMap): QuantileDiscretizer = defaultCopy(extra)

override def write: MLWriter = new QuantileDiscretizer.QuantileDiscretizerWriter(this)
}

@Since("1.6.0")
object QuantileDiscretizer extends DefaultParamsReadable[QuantileDiscretizer] with Logging {

private[QuantileDiscretizer]
class QuantileDiscretizerWriter(instance: QuantileDiscretizer) extends MLWriter {

override protected def saveImpl(path: String): Unit = {
// SPARK-23377: The default params will be saved and loaded as user-supplied params.
// Once `inputCols` is set, the default value of `outputCol` param causes the error
// when checking exclusive params. As a temporary to fix it, we skip the default value
// of `outputCol` if `inputCols` is set when saving the metadata.
// TODO: If we modify the persistence mechanism later to better handle default params,
// we can get rid of this.
var paramWithoutOutputCol: Option[JValue] = None
if (instance.isSet(instance.inputCols)) {
val params = instance.extractParamMap().toSeq
val jsonParams = params.filter(_.param != instance.outputCol).map { case ParamPair(p, v) =>
p.name -> parse(p.jsonEncode(v))
}.toList
paramWithoutOutputCol = Some(render(jsonParams))
}
DefaultParamsWriter.saveMetadata(instance, path, sc, paramMap = paramWithoutOutputCol)
}
}

@Since("1.6.0")
override def load(path: String): QuantileDiscretizer = super.load(path)
}
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,10 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
.setInputCol("myInputCol")
.setOutputCol("myOutputCol")
.setSplits(Array(0.1, 0.8, 0.9))
testDefaultReadWrite(t)

val bucketizer = testDefaultReadWrite(t)
val data = Seq((1.0, 2.0), (10.0, 100.0), (101.0, -1.0)).toDF("myInputCol", "myInputCol2")
bucketizer.transform(data)
}

test("Bucket numeric features") {
Expand Down Expand Up @@ -327,7 +330,12 @@ class BucketizerSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
.setInputCols(Array("myInputCol"))
.setOutputCols(Array("myOutputCol"))
.setSplitsArray(Array(Array(0.1, 0.8, 0.9)))
testDefaultReadWrite(t)

val bucketizer = testDefaultReadWrite(t)
val data = Seq((1.0, 2.0), (10.0, 100.0), (101.0, -1.0)).toDF("myInputCol", "myInputCol2")
bucketizer.transform(data)
assert(t.hasDefault(t.outputCol))
assert(bucketizer.hasDefault(bucketizer.outputCol))
}

test("Bucketizer in a pipeline") {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ import org.apache.spark.sql.functions.udf
class QuantileDiscretizerSuite
extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest {

import testImplicits._

test("Test observed number of buckets and their sizes match expected values") {
val spark = this.spark
import spark.implicits._
Expand Down Expand Up @@ -132,7 +134,10 @@ class QuantileDiscretizerSuite
.setInputCol("myInputCol")
.setOutputCol("myOutputCol")
.setNumBuckets(6)
testDefaultReadWrite(t)

val readDiscretizer = testDefaultReadWrite(t)
val data = sc.parallelize(1 to 100).map(Tuple1.apply).toDF("myInputCol")
readDiscretizer.fit(data)
}

test("Verify resulting model has parent") {
Expand Down Expand Up @@ -379,7 +384,12 @@ class QuantileDiscretizerSuite
.setInputCols(Array("input1", "input2"))
.setOutputCols(Array("result1", "result2"))
.setNumBucketsArray(Array(5, 10))
testDefaultReadWrite(discretizer)

val readDiscretizer = testDefaultReadWrite(discretizer)
val data = Seq((1.0, 2.0), (2.0, 3.0), (3.0, 4.0)).toDF("input1", "input2")
readDiscretizer.fit(data)
assert(discretizer.hasDefault(discretizer.outputCol))
assert(readDiscretizer.hasDefault(readDiscretizer.outputCol))
}

test("Multiple Columns: Both inputCol and inputCols are set") {
Expand Down