Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-29655][SQL] Read bucketed tables obeys spark.sql.shuffle.partitions #26409

Closed
wants to merge 10 commits into from
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,16 @@ case class EnsureRequirements(conf: SQLConf) extends Rule[SparkPlan] {
numPartitionsSet.headOption
}

val targetNumPartitions = requiredNumPartitions.getOrElse(childrenNumPartitions.max)
val nonShuffleChildrenNumPartitions =
childrenIndexes.map(children).filterNot(_.isInstanceOf[ShuffleExchangeExec])
.map(_.outputPartitioning.numPartitions).toSet
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: in practice there will be 2 children at most, toSet is not really needed.

val expectedChildrenNumPartitions = if (nonShuffleChildrenNumPartitions.nonEmpty) {
math.max(nonShuffleChildrenNumPartitions.max, conf.numShufflePartitions)
} else {
childrenNumPartitions.max
}

val targetNumPartitions = requiredNumPartitions.getOrElse(expectedChildrenNumPartitions)

children = children.zip(requiredChildDistributions).zipWithIndex.map {
case ((child, distribution), index) if childrenIndexes.contains(index) =>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ import org.apache.spark.sql.catalyst.expressions
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.physical.HashPartitioning
import org.apache.spark.sql.execution.{DataSourceScanExec, SortExec}
import org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec
import org.apache.spark.sql.execution.datasources.BucketingUtils
import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.joins.SortMergeJoinExec
Expand Down Expand Up @@ -382,8 +383,16 @@ abstract class BucketedReadSuite extends QueryTest with SQLTestUtils {
joined.sort("bucketed_table1.k", "bucketed_table2.k"),
df1.join(df2, joinCondition(df1, df2), joinType).sort("df1.k", "df2.k"))

assert(joined.queryExecution.executedPlan.isInstanceOf[SortMergeJoinExec])
val joinOperator = joined.queryExecution.executedPlan.asInstanceOf[SortMergeJoinExec]
val joinOperator = if (joined.sqlContext.conf.adaptiveExecutionEnabled) {
val executedPlan =
joined.queryExecution.executedPlan.asInstanceOf[AdaptiveSparkPlanExec].executedPlan
assert(executedPlan.isInstanceOf[SortMergeJoinExec])
executedPlan.asInstanceOf[SortMergeJoinExec]
} else {
val executedPlan = joined.queryExecution.executedPlan
assert(executedPlan.isInstanceOf[SortMergeJoinExec])
executedPlan.asInstanceOf[SortMergeJoinExec]
}

// check existence of shuffle
assert(
Expand Down Expand Up @@ -795,4 +804,22 @@ abstract class BucketedReadSuite extends QueryTest with SQLTestUtils {
}
}

test("SPARK-29655 Read bucketed tables obeys spark.sql.shuffle.partitions") {
withSQLConf(
SQLConf.SHUFFLE_PARTITIONS.key -> "5",
SQLConf.SHUFFLE_MAX_NUM_POSTSHUFFLE_PARTITIONS.key -> "7") {
val bucketSpec = Some(BucketSpec(6, Seq("i", "j"), Nil))
Seq(false, true).foreach { enableAdaptive =>
withSQLConf(SQLConf.ADAPTIVE_EXECUTION_ENABLED.key -> s"$enableAdaptive") {
val bucketedTableTestSpecLeft = BucketedTableTestSpec(bucketSpec, expectedShuffle = false)
val bucketedTableTestSpecRight = BucketedTableTestSpec(None, expectedShuffle = true)
testBucketing(
bucketedTableTestSpecLeft = bucketedTableTestSpecLeft,
bucketedTableTestSpecRight = bucketedTableTestSpecRight,
joinCondition = joinCondition(Seq("i", "j"))
)
}
}
}
}
}