-
Notifications
You must be signed in to change notification settings - Fork 14.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(chart-data): add rowcount, timegrain and column result types (#1…
…3271) * feat(chart-data): add rowcount, timegrain and column result types * break out actions from query_context * rename module
- Loading branch information
Showing
12 changed files
with
339 additions
and
99 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
import copy | ||
import math | ||
from typing import Any, Callable, cast, Dict, List, Optional, TYPE_CHECKING | ||
|
||
from flask_babel import _ | ||
|
||
from superset import app | ||
from superset.connectors.base.models import BaseDatasource | ||
from superset.exceptions import QueryObjectValidationError | ||
from superset.utils.core import ( | ||
ChartDataResultType, | ||
extract_column_dtype, | ||
extract_dataframe_dtypes, | ||
get_time_filter_status, | ||
QueryStatus, | ||
) | ||
|
||
if TYPE_CHECKING: | ||
from superset.common.query_context import QueryContext | ||
from superset.common.query_object import QueryObject | ||
|
||
config = app.config | ||
|
||
|
||
def _get_datasource( | ||
query_context: "QueryContext", query_obj: "QueryObject" | ||
) -> BaseDatasource: | ||
return query_obj.datasource or query_context.datasource | ||
|
||
|
||
def _get_columns( | ||
query_context: "QueryContext", query_obj: "QueryObject", _: bool | ||
) -> Dict[str, Any]: | ||
datasource = _get_datasource(query_context, query_obj) | ||
return { | ||
"data": [ | ||
{ | ||
"column_name": col.column_name, | ||
"verbose_name": col.verbose_name, | ||
"dtype": extract_column_dtype(col), | ||
} | ||
for col in datasource.columns | ||
] | ||
} | ||
|
||
|
||
def _get_timegrains( | ||
query_context: "QueryContext", query_obj: "QueryObject", _: bool | ||
) -> Dict[str, Any]: | ||
datasource = _get_datasource(query_context, query_obj) | ||
return { | ||
"data": [ | ||
{ | ||
"name": grain.name, | ||
"function": grain.function, | ||
"duration": grain.duration, | ||
} | ||
for grain in datasource.database.grains() | ||
] | ||
} | ||
|
||
|
||
def _get_query( | ||
query_context: "QueryContext", query_obj: "QueryObject", _: bool, | ||
) -> Dict[str, Any]: | ||
datasource = _get_datasource(query_context, query_obj) | ||
return { | ||
"query": datasource.get_query_str(query_obj.to_dict()), | ||
"language": datasource.query_language, | ||
} | ||
|
||
|
||
def _get_full( | ||
query_context: "QueryContext", | ||
query_obj: "QueryObject", | ||
force_cached: Optional[bool] = False, | ||
) -> Dict[str, Any]: | ||
datasource = _get_datasource(query_context, query_obj) | ||
result_type = query_obj.result_type or query_context.result_type | ||
payload = query_context.get_df_payload(query_obj, force_cached=force_cached) | ||
df = payload["df"] | ||
status = payload["status"] | ||
if status != QueryStatus.FAILED: | ||
payload["colnames"] = list(df.columns) | ||
payload["coltypes"] = extract_dataframe_dtypes(df) | ||
payload["data"] = query_context.get_data(df) | ||
del payload["df"] | ||
|
||
filters = query_obj.filter | ||
filter_columns = cast(List[str], [flt.get("col") for flt in filters]) | ||
columns = set(datasource.column_names) | ||
applied_time_columns, rejected_time_columns = get_time_filter_status( | ||
datasource, query_obj.applied_time_extras | ||
) | ||
payload["applied_filters"] = [ | ||
{"column": col} for col in filter_columns if col in columns | ||
] + applied_time_columns | ||
payload["rejected_filters"] = [ | ||
{"reason": "not_in_datasource", "column": col} | ||
for col in filter_columns | ||
if col not in columns | ||
] + rejected_time_columns | ||
|
||
if result_type == ChartDataResultType.RESULTS and status != QueryStatus.FAILED: | ||
return {"data": payload["data"]} | ||
return payload | ||
|
||
|
||
def _get_samples( | ||
query_context: "QueryContext", query_obj: "QueryObject", force_cached: bool = False | ||
) -> Dict[str, Any]: | ||
datasource = _get_datasource(query_context, query_obj) | ||
row_limit = query_obj.row_limit or math.inf | ||
query_obj = copy.copy(query_obj) | ||
query_obj.is_timeseries = False | ||
query_obj.orderby = [] | ||
query_obj.groupby = [] | ||
query_obj.metrics = [] | ||
query_obj.post_processing = [] | ||
query_obj.row_limit = min(row_limit, config["SAMPLES_ROW_LIMIT"]) | ||
query_obj.row_offset = 0 | ||
query_obj.columns = [o.column_name for o in datasource.columns] | ||
return _get_full(query_context, query_obj, force_cached) | ||
|
||
|
||
def _get_results( | ||
query_context: "QueryContext", query_obj: "QueryObject", force_cached: bool = False | ||
) -> Dict[str, Any]: | ||
payload = _get_full(query_context, query_obj, force_cached) | ||
return {"data": payload["data"]} | ||
|
||
|
||
_result_type_functions: Dict[ | ||
ChartDataResultType, Callable[["QueryContext", "QueryObject", bool], Dict[str, Any]] | ||
] = { | ||
ChartDataResultType.COLUMNS: _get_columns, | ||
ChartDataResultType.TIMEGRAINS: _get_timegrains, | ||
ChartDataResultType.QUERY: _get_query, | ||
ChartDataResultType.SAMPLES: _get_samples, | ||
ChartDataResultType.FULL: _get_full, | ||
ChartDataResultType.RESULTS: _get_results, | ||
} | ||
|
||
|
||
def get_query_results( | ||
result_type: ChartDataResultType, | ||
query_context: "QueryContext", | ||
query_obj: "QueryObject", | ||
force_cached: bool, | ||
) -> Dict[str, Any]: | ||
""" | ||
Return result payload for a chart data request. | ||
:param result_type: the type of result to return | ||
:param query_context: query context to which the query object belongs | ||
:param query_obj: query object for which to retrieve the results | ||
:param force_cached: should results be forcefully retrieved from cache | ||
:raises QueryObjectValidationError: if an unsupported result type is requested | ||
:return: JSON serializable result payload | ||
""" | ||
result_func = _result_type_functions.get(result_type) | ||
if result_func: | ||
return result_func(query_context, query_obj, force_cached) | ||
raise QueryObjectValidationError( | ||
_("Invalid result type: %(result_type)", result_type=result_type) | ||
) |
Oops, something went wrong.