-
Notifications
You must be signed in to change notification settings - Fork 481
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Co-occurrence matrix for GloVe word embedding
- Loading branch information
1 parent
615cd9a
commit 0293dbc
Showing
1 changed file
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
#------------------------------------------------------------- | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
#------------------------------------------------------------- | ||
# | ||
# The implementation is based on | ||
# https://github.com/stanfordnlp/GloVe/blob/master/src/cooccur.c | ||
# | ||
#------------------------------------------------------------- | ||
|
||
## Function: processText | ||
## Description: Cleans and processes text data by removing punctuation, converting to lowercase, and reformatting. | ||
## Input: | ||
## - S (Frame[Unknown]): Input data frame containing text data. | ||
## Output: | ||
## - result (Frame[Unknown]): Processed text data. | ||
processText = function(Frame[Unknown] S) return (Frame[Unknown] result){ | ||
|
||
print("processText"); | ||
tmpStr = map(S[,1], "x -> x.replaceAll(\"[.]\", \"\")"); | ||
tmpStr = map(tmpStr, "x -> x.replaceAll(\"[^a-zA-Z\\s]\", \" \")"); | ||
tmpStr = map(tmpStr, "x -> x.toLowerCase()"); | ||
result = cbind(as.frame(seq(1, nrow(S), 1)), tmpStr); | ||
} | ||
|
||
## Description: Tokenizes text data and retrieves word positions. | ||
## Input: | ||
## - S (Frame[Unknown]): Input text data. | ||
## - maxTokens (Int): Maximum number of tokens. | ||
## - jspec_pos (String): JSON specification for tokenization. | ||
## Output: | ||
## - result (Frame[Unknown]): Tokenized text with positions. | ||
getWordPosition = function(Frame[Unknown] S, Int maxTokens, String jspec_pos) return (Frame[Unknown] result){ | ||
|
||
print("getWordPosition"); | ||
wordPosition = tokenize(target=S, spec=jspec_pos, max_tokens=maxTokens); | ||
length = map(wordPosition[,3], "S -> S.length()"); | ||
result = cbind(wordPosition, length); | ||
} | ||
|
||
## Description: Encodes words into a numerical matrix format. | ||
## Input: | ||
## - S (Frame[Unknown]): Tokenized text. | ||
## Output: | ||
## - output (Matrix[double]): Encoded word matrix. | ||
## - wordCount (Int): Number of distinct words. | ||
## - column (Frame[Unknown]): Mapping of indices to distinct words. | ||
getRecodedMatrix = function(Frame[Unknown] S) return (Matrix[double] output, Int wordCount, Frame[Unknown] column){ | ||
print("getRecodedMatrix"); | ||
[output,M] = transformencode(target=S, spec="{ids:true,recode:[1]}"); | ||
distinctWord = map(M[,1], "s -> UtilFunctions.splitRecodeEntry(s)[0]"); | ||
index = map(M[,1], "s -> Integer.valueOf(UtilFunctions.splitRecodeEntry(s)[1])"); | ||
|
||
column = cbind(index, distinctWord); | ||
sortedIndex = order(target=as.matrix(index), by=1, decreasing=FALSE, index.return=TRUE); | ||
for(i in 1:nrow(sortedIndex)){ | ||
p = as.integer(as.scalar(sortedIndex[i,1])); | ||
column[as.integer(as.scalar(index[p])), 2] = distinctWord[p]; | ||
column[i, 1] = as.integer(as.scalar(index[p])); | ||
} | ||
wordCount = nrow(distinctWord); | ||
} | ||
|
||
|
||
createCoocMatrix = function( | ||
Frame[Unknown] wordPosition, | ||
Int tableSize, | ||
boolean distanceWeighting, | ||
boolean symmetric, | ||
Int windowSize) | ||
return (Matrix[double] coocMatrix) | ||
{ | ||
print("Processing word cooccurrence..."); | ||
coocMatrix = matrix(0, tableSize, tableSize); | ||
|
||
for (i in 1:nrow(wordPosition)) { | ||
docId = as.integer(as.scalar(wordPosition[i,1])); | ||
wordIndex = as.integer(as.scalar(wordPosition[i,5])); | ||
for (j in 1:windowSize) { | ||
# Check left context | ||
if (i-j > 0) { | ||
if(docId == as.integer(as.scalar(wordPosition[i-j, 1]))) | ||
{ | ||
neighbourWordIndex = as.integer(as.scalar(wordPosition[i-j,5])); | ||
increase = ifelse(distanceWeighting, 1.0 / j, 1.0); | ||
coocMatrix[wordIndex, neighbourWordIndex] = coocMatrix[wordIndex, neighbourWordIndex] + increase; | ||
} | ||
} | ||
# Check right context if symmetric | ||
if(symmetric){ | ||
if (i+j < nrow(wordPosition) + 1) { | ||
if(docId == as.integer(as.scalar(wordPosition[i+j, 1]))) | ||
{ | ||
neighbourWordIndex = as.integer(as.scalar(wordPosition[i+j,5])); | ||
increase = ifelse(distanceWeighting, 1.0 / j, 1.0); | ||
coocMatrix[wordIndex, neighbourWordIndex] = coocMatrix[wordIndex, neighbourWordIndex] + increase; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
print("Word-word cooccurrence matrix computation completed."); | ||
} | ||
|
||
## Function: getCoocMatrix | ||
## Description: Processes a text file to generate a co-occurrence matrix. | ||
## Input: | ||
## - filename (String): CSV file path. | ||
## - maxTokens (Int): Maximum number of tokens. | ||
## - windowSize (Int): Context window size. | ||
## - distanceWeighting (Boolean): Flag to control the distance weighting of cooccurrence counts. | ||
## - symmetric (Boolean): 0: asymmetric, 1: symmetric. | ||
## Output: | ||
## - result (Frame[Unknown]): Co-occurrence matrix. | ||
getCoocMatrix = function( | ||
Frame[Unknown] input, | ||
Int maxTokens, | ||
Int windowSize, | ||
Boolean distanceWeighting, | ||
Boolean symmetric) return (Matrix[double] coocMatrix, Frame[Unknown] column){ | ||
|
||
processedResult = processText(input[,1]); | ||
|
||
jspec_pos = "{\"algo\": \"split\", \"out\": \"position\",\"out_params\": {\"sort_alpha\": false},\"id_cols\": [1],\"tokenize_col\": 2}"; | ||
wordPosition = getWordPosition(processedResult, maxTokens, jspec_pos); | ||
|
||
[recodedWordPosition, tableSize, column] = getRecodedMatrix(wordPosition[,3]); | ||
coocInput = cbind(wordPosition, as.frame(recodedWordPosition)); | ||
|
||
coocMatrix = createCoocMatrix(coocInput, tableSize, distanceWeighting, symmetric, windowSize); | ||
|
||
} |