Skip to content

Commit

Permalink
[microNPU][5] Convert Proposals to te.Schedules (#10062)
Browse files Browse the repository at this point in the history
* [microNPU][5] Convert Proposals to te.Schedules

Change-Id: I6771578f1007b8fea02e2dec7d0c797a6ef6aa5e

* Fixes

Change-Id: Id062ca7793656be4e870ac48ba41a34aa83276d2

* Fix test

Change-Id: Ib0fd55b99459c26425e1805df19d12367244e1b0
  • Loading branch information
mbaret authored Mar 3, 2022
1 parent 5e33ffc commit 0c836b7
Show file tree
Hide file tree
Showing 3 changed files with 285 additions and 0 deletions.
1 change: 1 addition & 0 deletions python/tvm/contrib/ethosu/cascader/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,5 @@
from .device_config import EthosuDeviceConfig
from .tensor_config import TensorConfigState, MemoryRegion, TensorConfig
from .plan import Plan
from .scheduler import apply_proposal, cascade
from .cascader_options import CascaderOptions
236 changes: 236 additions & 0 deletions python/tvm/contrib/ethosu/cascader/scheduler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Scheduler for cascader which converts Proposals into Schedules."""
from typing import Tuple, List, Dict, DefaultDict
from collections import defaultdict
import numpy as np

from tvm import te
from tvm import tir
from .cascader_options import CascaderOptions
from .graph import CascaderGraph, Part, Tensor, TESubgraph
from .tensor_config import MemoryRegion
from .proposal import Proposal
from .proposal_generator import generate_proposals
from .graph import create_cascader_graph
from .device_config import EthosuDeviceConfig


def tile_nd(
sch: te.Schedule, tensor: te.Tensor, tile: Tuple[int, ...]
) -> Tuple[List[tir.IterVar], List[tir.IterVar]]:
"""Scheduling utility to perform N-dimensional tiling.
Parameters
----------
sch : te.Schedule
The schedule to apply the tiling to.
tensor : te.Tensor
The tensor to apply the tiling to.
tile : Tuple[int, ...]
The N-dimensional tile size.
Returns
-------
outer_indices : List[tir.IterVar]
The outer iteration variables.
inner_indices : List[tir.IterVar]
The inner iteration variables.
"""
outer_indices = []
inner_indices = []
for i, size in enumerate(tile):
outer, inner = sch[tensor].split(tensor.op.axis[i], size)
outer_indices.append(outer)
inner_indices.append(inner)

sch[tensor].reorder(*outer_indices, *inner_indices)
return outer_indices, inner_indices


def stripe_part(
part: Part, stripe_shape: Tuple[int, ...], sch: te.Schedule
) -> Tuple[te.Stage, tir.IterVar]:
"""Apply a striping schedule to the TE subgraph represented by a Part."""
te_subgraph = part.subgraph
te_output_tensor = te_subgraph.output_tensor
outer_indices, _ = tile_nd(sch, te_output_tensor, stripe_shape)
g = sch.create_group(
outputs=te_output_tensor.op.input_tensors,
inputs=te_subgraph.input_tensors,
include_inputs=False,
)
g.compute_at(sch[te_output_tensor], outer_indices[-1])
for ax in outer_indices:
sch[te_output_tensor].unroll(ax)

return sch[te_output_tensor], outer_indices[-1]


def cascade_part(
part: Part, stripe_stage: te.Stage, stripe_axis: tir.IterVar, sch: te.Schedule
) -> None:
"""Schedule a Part into a cascade indicated by a stripe Stage."""
te_subgraph = part.subgraph
g = sch.create_group(
outputs=te_subgraph.output_tensor, inputs=te_subgraph.input_tensors, include_inputs=False
)
g.compute_at(stripe_stage, stripe_axis)


def update_readers(part: Part, readers: DefaultDict[te.Tensor, List[te.Tensor]]) -> None:
"""
Update a dictionary which stores the te.Tensors that need to be read in
order to produce a given te.Tensor.
"""
visited = set()

def _visit(tensor):
if tensor not in visited and tensor not in part.subgraph.input_tensors:
visited.add(tensor)
for input_tensor in tensor.op.input_tensors:
readers[input_tensor].append(tensor)
_visit(input_tensor)

_visit(part.subgraph.output_tensor)


def apply_proposal(proposal: Proposal, sch: te.Schedule) -> None:
"""Apply a Proposal to a Schedule, converting all the Plans into TE scheduling instructions.
Note that the Schedule is mutated in-place.
Parameters
----------
proposal : Proposal
The Proposal to apply to the Schedule.
sch : te.Schedule
The Schedule to apply to Proposal to.
"""
for plan in proposal.plans:
output_tensor_config = plan.output_config
output_tensor = output_tensor_config.tensor
output_part = output_tensor.producers[0]
if output_part.in_line:
continue
stripe_config = output_tensor_config.stripe_configs[0]
stripe_shape = [int(x) for x in stripe_config.shape]
stripe_stage, stripe_axis = stripe_part(output_part, stripe_shape, sch)
copy_te_tensors = []
readers = defaultdict(list)
for part in plan.part_group:
if part != output_part:
cascade_part(part, stripe_stage, stripe_axis, sch)

update_readers(part, readers)
for i, input_tensor in enumerate(part.input_tensors):
tensor_config = plan.tensor_configs[input_tensor]
if tensor_config.home_region != tensor_config.copy_region:
copy_te_tensors.append(part.subgraph.input_tensors[i])

for te_tensor in copy_te_tensors:
copy_stage = sch.cache_read(te_tensor, "global", readers[te_tensor])
sch[copy_stage].compute_at(stripe_stage, stripe_axis)


def create_home_map(
graph: CascaderGraph,
io_region: MemoryRegion,
constant_region: MemoryRegion,
working_regions: List[MemoryRegion],
) -> Dict[Tensor, List[MemoryRegion]]:
"""Create a map between Tensors and the MemoryRegions they can be homed in."""
home_map = {}
for tensor in graph.tensor_order:
if tensor.is_constant:
home_map[tensor] = [constant_region]
elif tensor in graph.input_tensors or tensor in graph.output_tensors:
home_map[tensor] = [io_region]
else:
home_map[tensor] = working_regions

return home_map


def choose_proposal(proposals: List[Proposal], cascade_region: MemoryRegion):
"""Choose the best performing Proposal that doesn't overflow the cascade region."""
proposal_choice = proposals[0]
for proposal in reversed(proposals):
if proposal.memory_usage < cascade_region.size:
proposal_choice = proposal
break

return proposal_choice


def cascade(
sch: te.Schedule,
te_graph: TESubgraph,
const_dict: Dict[int, np.ndarray],
options: CascaderOptions,
io_region: MemoryRegion,
constant_region: MemoryRegion,
working_regions: List[MemoryRegion],
device_config: EthosuDeviceConfig,
) -> None:
"""Schedule a Tensor Expression graph using the technique of 'cascading'.
'Cascading' is a technique whereby operations are split into smaller
dependent tiles ('stripes') which can then execute in an interleaved
fashion. This allows for operations to execute together rather than
sequentially which can reduce intermediate memory requirements and in
certain cases improve performance.
For more detail on 'cascading' as well as how it is implemented, refer to
the RFC here: https://github.com/apache/tvm-rfcs/pull/37.
Parameters
----------
sch : te.Schedule
The Schedule to apply the cascading to.
te_graph : TESubgraph
The Tensor Expression graph from which the Schedule was created.
const_dict : Dict[int, np.ndarray]
A dictionary mapping input index to constant data if that input is
to be a constant.
options : CascaderOptions
Configuration options for the cascading scheduler.
io_region : MemoryRegion
The MemoryRegion in which input/output tensors should reside.
constant_region : MemoryRegion
The MemoryRegion in which constants should reside.
working_regions : List[MemoryRegion]
The MemoryRegions in which intermediate working tensors can reside. The
cascading scheduler will select which MemoryRegion to per tensor.
device_config : EthosuDeviceConfig
Target device configuration.
"""
assert options.cascade_region in working_regions
# First convert the Tensor Expression graph into a CascaderGraph
casc_graph = create_cascader_graph(te_graph, const_dict, device_config)
# Then create a mapping between Tensors and their possible memory homes
home_map = create_home_map(casc_graph, io_region, constant_region, working_regions)
# Generate Proposals for Pareto-optimal ways to cascade the CascaderGraph
proposals = generate_proposals(casc_graph, home_map, options)
# Select the best Proposal subject to the memory constraints
proposal_choice = choose_proposal(proposals, options.cascade_region)
# Apply the selected Proposal to the Tensor Expression Schedule
apply_proposal(proposal_choice, sch)
48 changes: 48 additions & 0 deletions tests/python/contrib/test_ethosu/cascader/test_scheduler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest

import tvm.contrib.ethosu.cascader as cs

from .infra import ethosu_enabled


if ethosu_enabled:

def test_cascade(
SRAM, FLASH, TwoConv2DWithSliceTE, TwoConv2DTE, MobileNetv1StartTE, MobileNetv1TE
):
fixtures = [
TwoConv2DTE,
TwoConv2DWithSliceTE,
MobileNetv1StartTE,
MobileNetv1TE,
]
device_config = cs.EthosuDeviceConfig("ethos-u55-256")
for sch, te_graph, const_dict in fixtures:
options = cs.CascaderOptions(
cascade_region=SRAM,
max_proposals=64,
stripe_factors=4,
max_plan_size=10,
always_copy_size=1024,
)
cs.cascade(sch, te_graph, const_dict, options, SRAM, FLASH, [SRAM], device_config)


if __name__ == "__main__":
pytest.main([__file__])

0 comments on commit 0c836b7

Please sign in to comment.