-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TIR][Schedule] Add unittest for read_write_at (#14395)
This PR adds unittest for schedule primitive read_at and write_at. Co-authored-by: Siyuan Feng <[email protected]>
- Loading branch information
Showing
1 changed file
with
221 additions
and
0 deletions.
There are no files selected for viewing
221 changes: 221 additions & 0 deletions
221
tests/python/unittest/test_tir_schedule_read_write_at.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-function-docstring,missing-module-docstring | ||
import sys | ||
|
||
import pytest | ||
|
||
import tvm | ||
from tvm import tir | ||
from tvm.script import tir as T | ||
from tvm.tir.schedule.testing import verify_trace_roundtrip | ||
|
||
|
||
# fmt: off | ||
# pylint: disable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks,not-callable | ||
|
||
@T.prim_func | ||
def cuda_matmul(a: T.handle, b: T.handle, c: T.handle) -> None: # pylint: disable=undefined-loop-variable | ||
A = T.match_buffer(a, [2048, 2048], "float32") | ||
B = T.match_buffer(b, [2048, 2048], "float32") | ||
C = T.match_buffer(c, [2048, 2048], "float32") | ||
for by in T.thread_binding(0, 32, thread = "blockIdx.y"): | ||
for bx in T.thread_binding(0, 32, thread = "blockIdx.x"): | ||
for vy in T.thread_binding(0, 2, thread = "vthread.y"): | ||
for vx in T.thread_binding(0, 2, thread = "vthread.x"): | ||
for ty in T.thread_binding(0, 8, thread = "threadIdx.y"): | ||
for tx in T.thread_binding(0, 8, thread = "threadIdx.x"): | ||
for k0 in T.serial(0, 256): | ||
for k1 in T.unroll(0, 8): | ||
for _, i, j in T.grid(1, 4, 4): | ||
with T.block("C"): | ||
vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) | ||
vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) | ||
vk = T.axis.R(2048, k0 * 8 + k1) | ||
T.reads([C[vi, vj], A[vi, vk], B[vk, vj]]) | ||
T.writes([C[vi, vj]]) | ||
with T.init(): | ||
C[vi, vj] = 0.0 | ||
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] | ||
|
||
|
||
@T.prim_func | ||
def cuda_matmul_read_at_a(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [2048, 2048], dtype="float32") | ||
B = T.match_buffer(b, [2048, 2048], dtype="float32") | ||
C = T.match_buffer(c, [2048, 2048], dtype="float32") | ||
A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
for by in T.thread_binding(0, 32, thread="blockIdx.y"): | ||
for bx in T.thread_binding(0, 32, thread="blockIdx.x"): | ||
for vy in T.thread_binding(0, 2, thread="vthread.y"): | ||
for vx in T.thread_binding(0, 2, thread="vthread.x"): | ||
for ty in T.thread_binding(0, 8, thread="threadIdx.y"): | ||
for tx in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for k0 in T.serial(0, 256): | ||
with T.block("A_shared"): | ||
v0 = T.axis.S(32, by) | ||
v1 = T.axis.S(256, k0) | ||
T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(64, 8): | ||
A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1] | ||
for k1 in T.unroll(0, 8): | ||
for v_, i, j in T.grid(1, 4, 4): | ||
with T.block("C"): | ||
vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) | ||
vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) | ||
vk = T.axis.R(2048, k0 * 8 + k1) | ||
T.reads([C[vi, vj], A_shared[vi, vk], B[vk, vj]]) | ||
T.writes([C[vi, vj]]) | ||
with T.init(): | ||
C[vi, vj] = T.float32(0) | ||
C[vi, vj] = C[vi, vj] + A_shared[vi, vk] * B[vk, vj] | ||
|
||
|
||
@T.prim_func | ||
def cuda_matmul_read_at_ab(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [2048, 2048], dtype="float32") | ||
B = T.match_buffer(b, [2048, 2048], dtype="float32") | ||
C = T.match_buffer(c, [2048, 2048], dtype="float32") | ||
A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
B_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
for by in T.thread_binding(0, 32, thread="blockIdx.y"): | ||
for bx in T.thread_binding(0, 32, thread="blockIdx.x"): | ||
for vy in T.thread_binding(0, 2, thread="vthread.y"): | ||
for vx in T.thread_binding(0, 2, thread="vthread.x"): | ||
for ty in T.thread_binding(0, 8, thread="threadIdx.y"): | ||
for tx in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for k0 in T.serial(0, 256): | ||
with T.block("A_shared"): | ||
v0 = T.axis.S(32, by) | ||
v1 = T.axis.S(256, k0) | ||
T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(64, 8): | ||
A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1] | ||
with T.block("B_shared"): | ||
v0 = T.axis.S(256, k0) | ||
v1 = T.axis.S(32, bx) | ||
T.reads([B[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]]) | ||
T.writes([B_shared[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(8, 64): | ||
B_shared[v0 * 8 + ax0, v1 * 64 + ax1] = B[v0 * 8 + ax0, v1 * 64 + ax1] | ||
for k1 in T.unroll(0, 8): | ||
for v_, i, j in T.grid(1, 4, 4): | ||
with T.block("C"): | ||
vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) | ||
vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) | ||
vk = T.axis.R(2048, k0 * 8 + k1) | ||
T.reads([C[vi, vj], A_shared[vi, vk], B_shared[vk, vj]]) | ||
T.writes([C[vi, vj]]) | ||
with T.init(): | ||
C[vi, vj] = T.float32(0) | ||
C[vi, vj] = C[vi, vj] + A_shared[vi, vk] * B_shared[vk, vj] | ||
|
||
@T.prim_func | ||
def cuda_matmul_write_at_c(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
A = T.match_buffer(a, [2048, 2048], dtype="float32") | ||
B = T.match_buffer(b, [2048, 2048], dtype="float32") | ||
C = T.match_buffer(c, [2048, 2048], dtype="float32") | ||
A_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
B_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
C_shared = T.alloc_buffer([2048, 2048], dtype="float32", scope="shared") | ||
for by in T.thread_binding(0, 32, thread="blockIdx.y"): | ||
for bx in T.thread_binding(0, 32, thread="blockIdx.x"): | ||
for vy in T.thread_binding(0, 2, thread="vthread.y"): | ||
for vx in T.thread_binding(0, 2, thread="vthread.x"): | ||
for ty in T.thread_binding(0, 8, thread="threadIdx.y"): | ||
for tx in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for k0 in T.serial(0, 256): | ||
with T.block("A_shared"): | ||
v0 = T.axis.S(32, by) | ||
v1 = T.axis.S(256, k0) | ||
T.reads([A[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.writes([A_shared[v0 * 64 : v0 * 64 + 64, v1 * 8 : v1 * 8 + 8]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(64, 8): | ||
A_shared[v0 * 64 + ax0, v1 * 8 + ax1] = A[v0 * 64 + ax0, v1 * 8 + ax1] | ||
with T.block("B_shared"): | ||
v0 = T.axis.S(256, k0) | ||
v1 = T.axis.S(32, bx) | ||
T.reads([B[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]]) | ||
T.writes([B_shared[v0 * 8 : v0 * 8 + 8, v1 * 64 : v1 * 64 + 64]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(8, 64): | ||
B_shared[v0 * 8 + ax0, v1 * 64 + ax1] = B[v0 * 8 + ax0, v1 * 64 + ax1] | ||
for k1 in T.unroll(0, 8): | ||
for v_, i, j in T.grid(1, 4, 4): | ||
with T.block("C"): | ||
vi = T.axis.S(2048, by * 64 + vy * 32 + ty * 4 + i) | ||
vj = T.axis.S(2048, bx * 64 + vx * 32 + tx * 4 + j) | ||
vk = T.axis.R(2048, k0 * 8 + k1) | ||
T.reads([C_shared[vi, vj], A_shared[vi, vk], B_shared[vk, vj]]) | ||
T.writes([C_shared[vi, vj]]) | ||
with T.init(): | ||
C_shared[vi, vj] = T.float32(0) | ||
C_shared[vi, vj] = C_shared[vi, vj] + A_shared[vi, vk] * B_shared[vk, vj] | ||
with T.block("C_shared"): | ||
v0 = T.axis.S(32, by) | ||
v1 = T.axis.S(32, bx) | ||
T.reads([C_shared[v0 * 64 : v0 * 64 + 64, v1 * 64 : v1 * 64 + 64]]) | ||
T.writes([C[v0 * 64 : v0 * 64 + 64, v1 * 64 : v1 * 64 + 64]]) | ||
T.block_attr({"auto_copy":1}) | ||
for ax0, ax1 in T.grid(64, 64): | ||
C[v0 * 64 + ax0, v1 * 64 + ax1] = C_shared[v0 * 64 + ax0, v1 * 64 + ax1] | ||
|
||
|
||
# pylint: enable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks,not-callable | ||
# fmt: on | ||
|
||
|
||
def test_read_at_global_to_shared_a(): | ||
sch = tir.Schedule(cuda_matmul, debug_mask="all") | ||
block = sch.get_block("C") | ||
# pylint: disable=invalid-name | ||
_by, _bx, _vy, _vx, _ty, _tx, k0, _k1, _, _i, _j = sch.get_loops(block) | ||
# pylint: enable=invalid-name | ||
sch.read_at(k0, block, 1, "shared") | ||
tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_read_at_a) | ||
verify_trace_roundtrip(sch, cuda_matmul) | ||
|
||
|
||
def test_read_at_global_to_shared_ab(): | ||
sch = tir.Schedule(cuda_matmul_read_at_a, debug_mask="all") | ||
block = sch.get_block("C") | ||
# pylint: disable=invalid-name | ||
_by, _bx, _vy, _vx, _ty, _tx, k0, _k1, _, _i, _j = sch.get_loops(block) | ||
# pylint: enable=invalid-name | ||
sch.read_at(k0, block, 2, "shared") | ||
tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_read_at_ab) | ||
verify_trace_roundtrip(sch, cuda_matmul_read_at_a) | ||
|
||
|
||
def test_read_at_local_to_shared_c(): | ||
sch = tir.Schedule(cuda_matmul_read_at_ab, debug_mask="all") | ||
block = sch.get_block("C") | ||
# pylint: disable=invalid-name | ||
_by, _bx, _vy, _vx, _ty, tx, _k0, _k1, _, _i, _j = sch.get_loops(block) | ||
# pylint: enable=invalid-name | ||
sch.write_at(tx, block, 0, "shared") | ||
tvm.ir.assert_structural_equal(sch.mod["main"], cuda_matmul_write_at_c) | ||
verify_trace_roundtrip(sch, cuda_matmul_read_at_ab) | ||
|
||
|
||
if __name__ == "__main__": | ||
tvm.testing.main() |