Skip to content

Commit

Permalink
[TOPI] Group normalization
Browse files Browse the repository at this point in the history
As more and more ML models nowadays contain the group normalization
computation, we find it beneficial to introduce this op to TOPI level.
It will enable us to optimize the group normalization operation as a
whole in a more convenient way.

This PR introduces the group normalization op to TOPI. The group norm
operation was introduced in https://arxiv.org/abs/1803.08494. The
implementation uses tuple reduction, same as the implementation of layer
norm. Implemented with tuple reduction, the corresponding generated TIR
function can be optimized by cross-thread reduction or rfactor through
MetaSchedule.

Full implementation credit goes to Bohan.

Co-authored-by: Bohan Hou <[email protected]>
  • Loading branch information
MasterJH5574 and spectrometerHBH committed Mar 4, 2023
1 parent 22c47ee commit 342c244
Show file tree
Hide file tree
Showing 8 changed files with 361 additions and 1 deletion.
151 changes: 151 additions & 0 deletions include/tvm/topi/nn/group_norm.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \brief group normalization op constructions
* \file nn/group_norm.h
*/
#ifndef TVM_TOPI_NN_GROUP_NORM_H_
#define TVM_TOPI_NN_GROUP_NORM_H_

#include <tvm/te/operation.h>
#include <tvm/topi/tags.h>

#include <algorithm>
#include <string>
#include <vector>

namespace tvm {
namespace topi {
namespace nn {

using namespace tvm::te;

inline Tensor group_norm(const Tensor& data, const Tensor& gamma, const Tensor& beta,
int num_groups, int channel_axis, const Array<Integer>& axes,
double epsilon, std::string name = "T_group_norm",
std::string tag = kInjective) {
// reshape data C -> G, C/G
auto ndim = data->shape.size();
channel_axis = GetRealAxis(static_cast<int>(ndim), {channel_axis})[0];

auto shape = data->shape;
auto group_size = floordiv(shape[channel_axis], num_groups);
auto new_shape = Array<PrimExpr>();
for (int i = 0; i < ndim; ++i) {
if (i == channel_axis) {
new_shape.push_back(num_groups);
new_shape.push_back(group_size);
} else {
new_shape.push_back(shape[i]);
}
}
auto data_reshaped = reshape(data, new_shape);
// reshape gamma and beta, C -> G, C/G
Tensor gamma_reshaped;
if (gamma.defined()) {
gamma_reshaped = reshape(gamma, {num_groups, group_size});
}
Tensor beta_reshaped;
if (beta.defined()) {
beta_reshaped = reshape(beta, {num_groups, group_size});
}

// get the new axes to normalize after reshape
std::vector<int> new_axes{channel_axis + 1};
for (auto axis : axes) {
int new_axis = GetRealAxis(static_cast<int>(ndim), {axis})[0];
if (new_axis < channel_axis) {
new_axes.push_back(new_axis);
} else if (new_axis > channel_axis) {
new_axes.push_back(new_axis + 1);
} else {
ICHECK(false) << "axes can not contain channel axis";
}
}
std::sort(new_axes.begin(), new_axes.end());

// sum x and x^2
ndim = data_reshaped->shape.size();
auto reduce_axes = MakeReduceAxes(new_axes, data_reshaped);
auto target_shape =
MakeReduceTargetShape(new_axes, data_reshaped, /*keepdims=*/false, /*atleast1d=*/true);
auto func = MakeTupleSumReducer();

auto compute = [ndim, &new_axes, &reduce_axes, &func, &data_reshaped](const Array<Var>& indices) {
Array<PrimExpr> eval_range;
int arg_counter = 0;
int red_counter = 0;

for (size_t i = 0; i < ndim; ++i) {
if (std::find(new_axes.begin(), new_axes.end(), i) != new_axes.end()) {
// new_axes contains i
eval_range.push_back(reduce_axes[red_counter]);
red_counter++;
} else {
eval_range.push_back(indices[arg_counter]);
arg_counter++;
}
}
auto square = [](const PrimExpr& x) { return x * x; };
return func({data_reshaped(eval_range), square(data_reshaped(eval_range))}, reduce_axes,
nullptr);
};

auto temp_x_x2 =
tvm::te::compute(target_shape, compute, data->op->name + "_red_temp", kCommReduce);

auto temp_x = temp_x_x2[0];
auto temp_x2 = temp_x_x2[1];
auto reduce_extent = make_const(data->dtype, 1);
for (auto axis : new_axes) {
reduce_extent *= data_reshaped->shape[axis];
}
auto group_norm_func = [&](const Array<Var>& indices) {
Array<Var> reduce_indices, non_reduce_indices, gamma_indices;
for (int i = 0, n = static_cast<int>(indices.size()); i < n; ++i) {
if (std::find(new_axes.begin(), new_axes.end(), i) != new_axes.end()) {
reduce_indices.push_back(indices[i]);
} else {
non_reduce_indices.push_back(indices[i]);
}
}
gamma_indices = {indices[channel_axis], indices[channel_axis + 1]};
auto mean = temp_x(non_reduce_indices) / reduce_extent;
auto var = temp_x2(non_reduce_indices) / reduce_extent - mean * mean;
auto group_norm =
(data_reshaped(indices) - mean) * tvm::rsqrt(var + make_const(data->dtype, epsilon));
if (gamma.defined()) {
group_norm = topi::multiply(group_norm, gamma_reshaped(gamma_indices));
}
if (beta.defined()) {
group_norm = topi::add(group_norm, beta_reshaped(gamma_indices));
}
return group_norm;
};
auto group_norm_out = tvm::te::compute(data_reshaped->shape, group_norm_func, name, tag);
auto group_norm_out_reshaped = reshape(group_norm_out, shape);
return group_norm_out_reshaped;
}

} // namespace nn
} // namespace topi
} // namespace tvm

#endif // TVM_TOPI_NN_GROUP_NORM_H_
1 change: 1 addition & 0 deletions python/tvm/topi/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from .qnn import *
from .upsampling import *
from .layer_norm import layer_norm
from .group_norm import group_norm
from .local_response_norm import *
from .bitserial_conv2d import *
from .bitserial_dense import *
Expand Down
52 changes: 52 additions & 0 deletions python/tvm/topi/nn/group_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Layer normalization operator."""
from .. import cpp


def group_norm(data, gamma, beta, num_groups, channel_axis, axes, epsilon=1e-5):
"""Group normalization operator.
Parameters
----------
data : tvm.te.Tensor
N-D with shape (d_0, d_1, ..., d_{N-1})
gamma: tvm.te.Tensor
1-D with shape (r_0) where r_0 == d_{channel_axis}
beta: tvm.te.Tensor
Optional, 1-D with shape (r_0) where r_0 == d_{channel_axis}
num_groups : int
The number of groups
channel_axis : int
The channel axis
axes : list of int
Axis over the normalization applied, excluding the channel axis
epsilon : float
The epsilon value to avoid division by zero.
Returns
-------
result : tvm.te.Tensor
N-D with shape (d_0, d_1, ..., d_{N-1})
"""
return cpp.nn.group_norm(data, gamma, beta, num_groups, channel_axis, axes, epsilon)
1 change: 1 addition & 0 deletions python/tvm/topi/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
from .roi_align_python import roi_align_nchw_python, roi_align_nhwc_python
from .roi_pool_python import roi_pool_nchw_python
from .layer_norm_python import layer_norm_python
from .group_norm_python import group_norm_python
from .lrn_python import lrn_python
from .l2_normalize_python import l2_normalize_python
from .gather_python import gather_python
Expand Down
82 changes: 82 additions & 0 deletions python/tvm/topi/testing/group_norm_python.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, line-too-long, unused-variable, too-many-locals
"""Group normalization in python"""
import numpy as np


def group_norm_python(data, gamma, beta, num_groups, channel_axis, axes, epsilon=1e-5):
"""Group normalization operator.
Parameters
----------
data : tvm.te.Tensor
N-D with shape (d_0, d_1, ..., d_{N-1})
gamma: tvm.te.Tensor
1-D with shape (r_0) where r_0 == d_{channel_axis}
beta: tvm.te.Tensor
Optional, 1-D with shape (r_0) where r_0 == d_{channel_axis}
num_groups : int
The number of groups
channel_axis : int
The channel axis
axes : list of int
Axis over the normalization applied, excluding the channel axis
epsilon : float
The epsilon value to avoid division by zero.
Returns
-------
result : tvm.te.Tensor
N-D with shape (d_0, d_1, ..., d_{N-1})
"""
old_shape = data.shape
new_shape = list(old_shape)
new_shape[channel_axis] = data.shape[channel_axis] // num_groups
new_shape.insert(channel_axis, num_groups)
data = np.reshape(data, new_shape)
new_axes = [channel_axis + 1]
for axis in axes:
if axis < channel_axis:
new_axes.append(axis)
else:
new_axes.append(axis + 1)
mean = np.mean(data, axis=tuple(new_axes), keepdims=True)
var = np.var(data, axis=tuple(new_axes), keepdims=True)
data = (data - mean) / np.sqrt(var + epsilon)
data = np.reshape(data, old_shape)

gamma_broadcast_shape = [1 for _ in range(len(old_shape))]
gamma_broadcast_shape[channel_axis] = gamma.shape[0]
gamma = np.reshape(gamma, gamma_broadcast_shape)

beta_broadcast_shape = [1 for _ in range(len(old_shape))]
beta_broadcast_shape[channel_axis] = beta.shape[0]
if beta is not None:
beta = np.reshape(beta, beta_broadcast_shape)

data *= gamma
if beta is not None:
data += beta

return data
7 changes: 7 additions & 0 deletions src/topi/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
#include <tvm/topi/nn/dense.h>
#include <tvm/topi/nn/dilate.h>
#include <tvm/topi/nn/flatten.h>
#include <tvm/topi/nn/group_norm.h>
#include <tvm/topi/nn/layer_norm.h>
#include <tvm/topi/nn/local_response_norm.h>
#include <tvm/topi/nn/mapping.h>
Expand Down Expand Up @@ -163,5 +164,11 @@ TVM_REGISTER_GLOBAL("topi.nn.layer_norm").set_body([](TVMArgs args, TVMRetValue*
*rv = nn::layer_norm(args[0], args[1], args[2], args[3], static_cast<double>(args[4]));
});

/* Ops from nn/group_norm.h */
TVM_REGISTER_GLOBAL("topi.nn.group_norm").set_body([](TVMArgs args, TVMRetValue* rv) {
*rv = nn::group_norm(args[0], args[1], args[2], static_cast<int>(args[3]),
static_cast<int>(args[4]), args[5], static_cast<double>(args[6]));
});

} // namespace topi
} // namespace tvm
66 changes: 66 additions & 0 deletions tests/python/topi/python/test_topi_group_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test code for group_norm."""
import numpy as np
import pytest
import tvm
from tvm import te
from tvm import topi
from tvm.topi.utils import get_const_tuple
import tvm.topi.testing

import tvm.testing


_group_norm_schedule = {
"generic": topi.generic.schedule_injective,
}


# only test on llvm because schedule is missing
@tvm.testing.parametrize_targets("llvm")
@pytest.mark.parametrize("shape, axis", [([2, 4, 16], (2,)), ([2, 4, 4, 16], (2, 3))])
def test_group_norm(target, dev, shape, axis, epsilon=1e-5, dtype="float32", rtol=1e-5, atol=1e-5):
data = te.placeholder(shape, dtype=dtype, name="data")
num_groups = 2
channel_axis = 1
gamma = te.placeholder((shape[channel_axis],), dtype=dtype, name="gamma")
beta = te.placeholder((shape[channel_axis],), dtype=dtype, name="beta")
B = topi.nn.group_norm(data, gamma, beta, num_groups, channel_axis, axis, epsilon)

np.random.seed(0)
data_np = np.random.uniform(size=shape).astype(dtype)
gamma_np = np.random.uniform(size=(shape[channel_axis],)).astype(dtype)
beta_np = np.random.uniform(size=(shape[channel_axis],)).astype(dtype)
b_np = tvm.topi.testing.group_norm_python(
data_np, gamma_np, beta_np, num_groups, channel_axis, axis, epsilon
)

with tvm.target.Target(target):
s_func = tvm.topi.testing.dispatch(target, _group_norm_schedule)
s = s_func([B])
data_tvm = tvm.nd.array(data_np, dev)
gamma_tvm = tvm.nd.array(gamma_np, dev)
beta_tvm = tvm.nd.array(beta_np, dev)
b_tvm = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), dev)
f = tvm.build(s, [data, gamma, beta, B], target)
f(data_tvm, gamma_tvm, beta_tvm, b_tvm)
tvm.testing.assert_allclose(b_tvm.numpy(), b_np, rtol=rtol, atol=atol)


if __name__ == "__main__":
tvm.testing.main()
2 changes: 1 addition & 1 deletion tests/python/topi/python/test_topi_layer_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_layer_norm(target, dev, shape, axis, episilon=1e-5, dtype="float32", rt
b_tvm = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=dtype), dev)
f = tvm.build(s, [data, gamma, beta, B], target)
f(data_tvm, gamma_tvm, beta_tvm, b_tvm)
tvm.testing.assert_allclose(b_tvm.asnumpy(), b_np, rtol=rtol, atol=atol)
tvm.testing.assert_allclose(b_tvm.numpy(), b_np, rtol=rtol, atol=atol)


if __name__ == "__main__":
Expand Down

0 comments on commit 342c244

Please sign in to comment.