Skip to content

Commit

Permalink
[Adreno] Adapt reduction schedule for adreno
Browse files Browse the repository at this point in the history
Origin cuda schedule uses rfactor that is 10x-50x slower on
Adreno than without barries
  • Loading branch information
elvin-n committed Oct 17, 2022
1 parent 3f0d3f2 commit 5320706
Show file tree
Hide file tree
Showing 4 changed files with 215 additions and 0 deletions.
7 changes: 7 additions & 0 deletions python/tvm/relay/op/strategy/adreno.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,13 @@ def schedule_injective_adreno(attrs, outs, target):
return topi.adreno.schedule_injective(outs)


@schedule_reduce.register(["adreno"])
def schedule_reduce_adreno(attrs, outs, target):
"""schedule reduction ops for cuda"""
with target:
return topi.adreno.schedule_reduce(outs)


@concatenate_strategy.register(["adreno"])
def concatenate_strategy_adreno(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
Expand Down
1 change: 1 addition & 0 deletions python/tvm/topi/adreno/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@
from .conv2d_nchw_winograd import *
from .conv2d_nhwc_winograd import *
from .injective import schedule_injective
from .reduction import *
154 changes: 154 additions & 0 deletions python/tvm/topi/adreno/reduction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,unused-variable,too-many-locals,len-as-condition
"""Schedule for reduce operators"""
import numpy
import tvm
from tvm import te
from .. import tag
from ..utils import get_const_tuple
from .injective import schedule_injective_from_existing
from .utils import get_div


def _schedule_reduce_adreno(op, sch, is_idx_reduce=False):
if is_idx_reduce:
real_output = op.output(0)
temp_idx_input = op.input_tensors[0].op.output(0)
temp_val_input = op.input_tensors[0].op.output(1)
else:
real_output = op.output(0)
shape = get_const_tuple(real_output.shape)
latest4 = shape[-1] == 4
div4 = numpy.prod(shape) % 4 == 0

# Fuse and split the axis
if latest4:
fused_outer = sch[real_output].fuse(
*[sch[real_output].op.axis[i] for i in range(len(sch[real_output].op.axis) - 1)]
)
else:
fused_outer = sch[real_output].fuse(
*[sch[real_output].op.axis[i] for i in range(len(sch[real_output].op.axis))]
)

ftc = numpy.prod(shape)
a = fused_outer
if latest4:
sch[real_output].vectorize(sch[real_output].op.axis[-1])
elif div4 and not is_idx_reduce:
a, b = sch[real_output].split(fused_outer, factor=4)
sch[real_output].vectorize(b)
ftc = ftc / 4

num_thread = get_div(ftc, 128)

bx, outer_in = sch[real_output].split(a, factor=num_thread)

sch[real_output].bind(bx, te.thread_axis("blockIdx.x"))
sch[real_output].bind(outer_in, te.thread_axis("threadIdx.y"))
if is_idx_reduce:
sch[temp_idx_input].compute_at(sch[real_output], outer_in)
sch[temp_val_input].compute_at(sch[real_output], outer_in)


def _enable_auto_inline(sch):
def is_scheduled(stage):
# auto inline requires the attach type is AttachType.kGroupRoot
conds = [
len(stage.relations) == 0,
stage.attach_type == 1,
stage.all_iter_vars == stage.leaf_iter_vars,
]
if not all(conds):
return True
return False

for s in sch.stages:
if not s.is_output and isinstance(s.op, tvm.te.ComputeOp):
if is_scheduled(s) or len(s.op.reduce_axis) != 0:
return False
return True


def schedule_reduce(outs):
"""Schedule for inject->reduce->bcast ops.
Parameters
----------
outs: Array of Tensor
The computation graph description of reduce in the format
of an array of tensors.
Returns
-------
sch: Schedule
The computation schedule for the op.
"""
outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs
sch = te.create_schedule([x.op for x in outs])
scheduled_ops = []
enable_auto_inline = _enable_auto_inline(sch)

def traverse_before_reduce(operator):
"""Internal traverse function"""
if isinstance(operator, tvm.te.PlaceholderOp):
return
if tag.is_injective(operator.tag):
sch[operator].compute_inline()
for tensor in operator.input_tensors:
if tensor.op not in scheduled_ops:
traverse_before_reduce(tensor.op)
else:
raise RuntimeError("Unsupported operator: %s" % operator.tag)

scheduled_ops.append(operator)

def traverse_after_reduce(operator):
"""Internal traverse function"""
if tag.is_broadcast(operator.tag):
if operator not in scheduled_ops:
schedule_injective_from_existing(sch, operator.output(0))
for tensor in operator.input_tensors:
if tensor.op not in scheduled_ops:
if enable_auto_inline:
traverse_before_reduce(tensor.op)
else:
traverse_after_reduce(tensor.op)
elif operator.tag == "comm_reduce":
if operator not in scheduled_ops:
_schedule_reduce_adreno(operator, sch)
for tensor in operator.input_tensors:
if tensor.op not in scheduled_ops:
traverse_before_reduce(tensor.op)
elif operator.tag == "comm_reduce_idx":
if operator not in scheduled_ops:
_schedule_reduce_adreno(operator, sch, is_idx_reduce=True)
input_tensors = operator.input_tensors[0].op.input_tensors
for tensor in input_tensors:
if tensor.op not in scheduled_ops:
traverse_before_reduce(tensor.op)
elif isinstance(operator, tvm.te.PlaceholderOp):
pass
else:
raise RuntimeError("Unsupported operator: %s" % operator.tag)

scheduled_ops.append(operator)

for out in outs:
traverse_after_reduce(out.op)
return sch
53 changes: 53 additions & 0 deletions tests/python/relay/opencl_texture/test_reduction_texture.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import re
import tvm
import numpy as np
from tvm import relay
from tvm.relay import testing
from tvm.contrib import utils
from utils.adreno_utils import gpu_preprocess, build_run_compare


dtype = tvm.testing.parameter("float32")


@tvm.testing.requires_opencl
@tvm.testing.parametrize_targets("opencl -device=adreno")
def test_mean(target, dtype):
# NCHW
input_shape = (1, 3, 720, 1280)
A = relay.var("data", shape=input_shape, dtype=dtype)
mean = relay.mean(A, axis=1, keepdims=True)
mod = relay.Function([A], mean)
print(mod)

build_run_compare(mod, {}, {"data": input_shape}, dtype, target)


@tvm.testing.requires_opencl
@tvm.testing.parametrize_targets("opencl -device=adreno")
def test_argmax(target, dtype):
# NCHW
input_shape = (1, 3, 720, 1280)
A = relay.var("data", shape=input_shape, dtype=dtype)
argmax = relay.op.argmax(A, axis=[1])
mod = relay.Function([A], argmax)
print(mod)

build_run_compare(mod, {}, {"data": input_shape}, dtype, target)

0 comments on commit 5320706

Please sign in to comment.