-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MetaSchedule] Enable AutoTVM-style template-based search space (#10461)
* [MetaSchedule] Enable AutoTVM-style template-based search space * Fix lint * suppress mypy
- Loading branch information
Showing
15 changed files
with
1,054 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
172 changes: 172 additions & 0 deletions
172
python/tvm/meta_schedule/testing/conv2d_winograd_cpu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-docstring | ||
|
||
from tvm.script import tir as T | ||
|
||
# pylint: disable=invalid-name,no-member,line-too-long,too-many-nested-blocks,no-self-argument,no-self-use,unused-argument,chained-comparison,misplaced-comparison-constant | ||
|
||
|
||
@T.prim_func | ||
def conv2d_winograd_cpu( | ||
X: T.Buffer[(1, 14, 14, 128), "float32"], # type: ignore | ||
W: T.Buffer[(6, 6, 128, 128), "float32"], # type: ignore | ||
conv2d_winograd: T.Buffer[(1, 12, 12, 128), "float32"], # type: ignore | ||
) -> None: | ||
# body | ||
data_pad = T.alloc_buffer([1, 16, 16, 128]) | ||
input_tile = T.alloc_buffer([6, 6, 9, 128]) | ||
B = T.alloc_buffer([6, 6]) | ||
data_pack = T.alloc_buffer([6, 6, 9, 128]) | ||
bgemm = T.alloc_buffer([6, 6, 9, 128]) | ||
A = T.alloc_buffer([6, 4]) | ||
inverse = T.alloc_buffer([4, 4, 9, 128]) | ||
for i0, i1, i2, i3 in T.grid(1, 16, 16, 128): | ||
with T.block("data_pad"): | ||
i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3]) | ||
T.block_attr({"schedule_rule": "None"}) | ||
T.reads([X[i0_1, i1_1, i2_1, i3_1]]) | ||
T.writes([data_pad[i0_1, i1_1, i2_1, i3_1]]) | ||
data_pad[i0_1, i1_1, i2_1, i3_1] = T.if_then_else( | ||
0 <= i1_1 and i1_1 < 14 and 0 <= i2_1 and i2_1 < 14, # type: ignore | ||
X[i0_1, i1_1, i2_1, i3_1], | ||
T.float32(0), | ||
dtype="float32", | ||
) | ||
for i0_2, i1_2, i2_2, i3_2 in T.grid(6, 6, 9, 128): | ||
with T.block("input_tile"): | ||
eps, nu, p, ci = T.axis.remap("SSSS", [i0_2, i1_2, i2_2, i3_2]) | ||
T.block_attr({"schedule_rule": "None"}) | ||
T.reads( | ||
data_pad[ | ||
T.floordiv(p, 9), # type: ignore | ||
((T.floordiv(T.floormod(p, 9), 3) * 4) + eps), # type: ignore | ||
((T.floormod(p, 3) * 4) + nu), # type: ignore | ||
ci, | ||
] | ||
) | ||
T.writes([input_tile[eps, nu, p, ci]]) | ||
input_tile[eps, nu, p, ci] = data_pad[ | ||
T.floordiv(p, 9), # type: ignore | ||
((T.floordiv(T.floormod(p, 9), 3) * 4) + eps), # type: ignore | ||
((T.floormod(p, 3) * 4) + nu), # type: ignore | ||
ci, | ||
] | ||
for i0_3, i1_3 in T.grid(6, 6): | ||
with T.block("B"): | ||
i, j = T.axis.remap("SS", [i0_3, i1_3]) | ||
T.block_attr({"schedule_rule": "meta_schedule.compute_inline"}) | ||
T.writes([B[i, j]]) | ||
# fmt: off | ||
B[i, j] = T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 5)), T.float32(1), T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 4)), T.float32(0), T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 3)), T.float32(0), T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 2)), T.float32(0), T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 1)), T.float32(0), T.Select(((T.floormod(i, 6) == 5) and (T.floormod(j, 6) == 0)), T.float32(0), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 5)), T.float32(1.5), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 4)), T.float32(1), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 3)), T.float32(1), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 2)), T.float32(1), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 1)), T.float32(1), T.Select(((T.floormod(i, 6) == 4) and (T.floormod(j, 6) == 0)), T.float32(1), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 5)), T.float32(-2), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 4)), T.float32(-0.5), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 3)), T.float32(2), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 2)), T.float32(2.5), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 1)), T.float32(0.5), T.Select(((T.floormod(i, 6) == 3) and (T.floormod(j, 6) == 0)), T.float32(1.5), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 5)), T.float32(-1.5), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 4)), T.float32(-1), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 3)), T.float32(-1), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 2)), T.float32(0.5), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 1)), T.float32(-2.5), T.Select(((T.floormod(i, 6) == 2) and (T.floormod(j, 6) == 0)), T.float32(-2), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 5)), T.float32(1), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 4)), T.float32(0.5), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 3)), T.float32(-2), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 2)), T.float32(-1), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 1)), T.float32(1), T.Select(((T.floormod(i, 6) == 1) and (T.floormod(j, 6) == 0)), T.float32(-1.5), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 5)), T.float32(0), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 4)), T.float32(0), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 3)), T.float32(0), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 2)), T.float32(0), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 1)), T.float32(0), T.Select(((T.floormod(i, 6) == 0) and (T.floormod(j, 6) == 0)), T.float32(1), T.float32(0))))))))))))))))))))))))))))))))))))) # type: ignore | ||
# fmt: on | ||
for i0_4, i1_4, i2_3, i3_3, i4, i5 in T.grid(6, 6, 9, 128, 6, 6): | ||
with T.block("data_pack"): | ||
eps_1, nu_1, p_1, ci_1, r_a, r_b = T.axis.remap( | ||
"SSSSRR", [i0_4, i1_4, i2_3, i3_3, i4, i5] | ||
) | ||
T.block_attr({"schedule_rule": "meta_schedule.winograd_data_pack.cpu"}) | ||
T.reads( | ||
[ | ||
data_pack[eps_1, nu_1, p_1, ci_1], | ||
input_tile[r_a, r_b, p_1, ci_1], | ||
B[ | ||
T.min(r_a, r_b) : ( # type: ignore | ||
T.min(r_a, r_b) + ((T.max(r_a, r_b) + 1) - T.min(r_a, r_b)) # type: ignore | ||
), | ||
T.min(eps_1, nu_1) : ( # type: ignore | ||
T.min(eps_1, nu_1) + ((T.max(eps_1, nu_1) + 1) - T.min(eps_1, nu_1)) # type: ignore | ||
), | ||
], | ||
] | ||
) | ||
T.writes([data_pack[eps_1, nu_1, p_1, ci_1]]) | ||
with T.init(): | ||
data_pack[eps_1, nu_1, p_1, ci_1] = T.float32(0) | ||
data_pack[eps_1, nu_1, p_1, ci_1] = data_pack[eps_1, nu_1, p_1, ci_1] + ( | ||
(input_tile[r_a, r_b, p_1, ci_1] * B[r_a, eps_1]) * B[r_b, nu_1] | ||
) | ||
for i0_5, i1_5, i2_4, i3_4, i4_1 in T.grid(6, 6, 9, 128, 128): | ||
with T.block("bgemm"): | ||
eps_2, nu_2, p_2, co, ci_2 = T.axis.remap("SSSSR", [i0_5, i1_5, i2_4, i3_4, i4_1]) | ||
T.block_attr({"meta_schedule.write_cache_level": [2]}) | ||
T.reads( | ||
[ | ||
bgemm[eps_2, nu_2, p_2, co], | ||
data_pack[eps_2, nu_2, p_2, ci_2], | ||
W[eps_2, nu_2, co, ci_2], | ||
] | ||
) | ||
T.writes([bgemm[eps_2, nu_2, p_2, co]]) | ||
with T.init(): | ||
bgemm[eps_2, nu_2, p_2, co] = T.float32(0) | ||
bgemm[eps_2, nu_2, p_2, co] = ( | ||
bgemm[eps_2, nu_2, p_2, co] | ||
+ data_pack[eps_2, nu_2, p_2, ci_2] * W[eps_2, nu_2, co, ci_2] | ||
) | ||
for i0_6, i1_6 in T.grid(6, 4): | ||
with T.block("A"): | ||
i_1, j_1 = T.axis.remap("SS", [i0_6, i1_6]) | ||
T.block_attr({"schedule_rule": "meta_schedule.compute_inline"}) | ||
T.writes([A[i_1, j_1]]) | ||
# fmt: off | ||
A[i_1, j_1] = T.Select(((T.floormod(i_1, 6) == 5) and (T.floormod(j_1, 4) == 3)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 5) and (T.floormod(j_1, 4) == 2)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 5) and (T.floormod(j_1, 4) == 1)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 5) and (T.floormod(j_1, 4) == 0)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 4) and (T.floormod(j_1, 4) == 3)), T.float32(-8), T.Select(((T.floormod(i_1, 6) == 4) and (T.floormod(j_1, 4) == 2)), T.float32(4), T.Select(((T.floormod(i_1, 6) == 4) and (T.floormod(j_1, 4) == 1)), T.float32(-2), T.Select(((T.floormod(i_1, 6) == 4) and (T.floormod(j_1, 4) == 0)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 3) and (T.floormod(j_1, 4) == 3)), T.float32(0.125), T.Select(((T.floormod(i_1, 6) == 3) and (T.floormod(j_1, 4) == 2)), T.float32(0.25), T.Select(((T.floormod(i_1, 6) == 3) and (T.floormod(j_1, 4) == 1)), T.float32(0.5), T.Select(((T.floormod(i_1, 6) == 3) and (T.floormod(j_1, 4) == 0)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 2) and (T.floormod(j_1, 4) == 3)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 2) and (T.floormod(j_1, 4) == 2)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 2) and (T.floormod(j_1, 4) == 1)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 2) and (T.floormod(j_1, 4) == 0)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 1) and (T.floormod(j_1, 4) == 3)), T.float32(-1), T.Select(((T.floormod(i_1, 6) == 1) and (T.floormod(j_1, 4) == 2)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 1) and (T.floormod(j_1, 4) == 1)), T.float32(-1), T.Select(((T.floormod(i_1, 6) == 1) and (T.floormod(j_1, 4) == 0)), T.float32(1), T.Select(((T.floormod(i_1, 6) == 0) and (T.floormod(j_1, 4) == 3)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 0) and (T.floormod(j_1, 4) == 2)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 0) and (T.floormod(j_1, 4) == 1)), T.float32(0), T.Select(((T.floormod(i_1, 6) == 0) and (T.floormod(j_1, 4) == 0)), T.float32(1), T.float32(0))))))))))))))))))))))))) # type: ignore | ||
# fmt: on | ||
for i0_7, i1_7, i2_5, i3_5, i4_2, i5_1 in T.grid(4, 4, 9, 128, 6, 6): | ||
with T.block("inverse"): | ||
vh, vw, p_3, co_1, r_a_1, r_b_1 = T.axis.remap( | ||
"SSSSRR", [i0_7, i1_7, i2_5, i3_5, i4_2, i5_1] | ||
) | ||
T.block_attr({"schedule_rule": "meta_schedule.winograd_inverse"}) | ||
T.reads( | ||
[ | ||
inverse[vh, vw, p_3, co_1], | ||
bgemm[r_a_1, r_b_1, p_3, co_1], | ||
A[ | ||
T.min(r_a_1, r_b_1) : ( # type: ignore | ||
T.min(r_a_1, r_b_1) + ((T.max(r_a_1, r_b_1) + 1) - T.min(r_a_1, r_b_1)) # type: ignore | ||
), | ||
T.min(vh, vw) : (T.min(vh, vw) + ((T.max(vh, vw) + 1) - T.min(vh, vw))), # type: ignore | ||
], | ||
] | ||
) | ||
T.writes([inverse[vh, vw, p_3, co_1]]) | ||
with T.init(): | ||
inverse[vh, vw, p_3, co_1] = T.float32(0) | ||
inverse[vh, vw, p_3, co_1] = inverse[vh, vw, p_3, co_1] + ( | ||
(bgemm[r_a_1, r_b_1, p_3, co_1] * A[r_a_1, vh]) * A[r_b_1, vw] | ||
) | ||
for i0_8, i1_8, i2_6, i3_6 in T.grid(1, 12, 12, 128): | ||
with T.block("conv2d_winograd"): | ||
n, h, w, co_2 = T.axis.remap("SSSS", [i0_8, i1_8, i2_6, i3_6]) | ||
T.reads( | ||
[ | ||
inverse[ | ||
T.floormod(h, 4), # type: ignore | ||
T.floormod(w, 4), # type: ignore | ||
(((n * 9) + (T.floordiv(h, 4) * 3)) + T.floordiv(w, 4)), # type: ignore | ||
co_2, | ||
] | ||
] | ||
) | ||
T.writes([conv2d_winograd[n, h, w, co_2]]) | ||
conv2d_winograd[n, h, w, co_2] = inverse[ | ||
T.floormod(h, 4), # type: ignore | ||
T.floormod(w, 4), # type: ignore | ||
(((n * 9) + (T.floordiv(h, 4) * 3)) + T.floordiv(w, 4)), # type: ignore | ||
co_2, | ||
] |
Oops, something went wrong.