Skip to content

Commit

Permalink
[TOPI] C++ doc (#320)
Browse files Browse the repository at this point in the history
  • Loading branch information
nicolasvasilache authored and tqchen committed Aug 14, 2017
1 parent b0c42f3 commit cbdd14f
Show file tree
Hide file tree
Showing 6 changed files with 363 additions and 66 deletions.
2 changes: 1 addition & 1 deletion HalideIR
Submodule HalideIR updated 1 files
+1 −1 src/ir/IR.h
135 changes: 115 additions & 20 deletions topi/include/topi/broadcast.h
Original file line number Diff line number Diff line change
@@ -1,55 +1,150 @@
/*
/*!
* Copyright (c) 2017 by Contributors
* \brief Broadcast op constructions
* \file broadcast.h
* \file topi/broadcast.h
*/
#ifndef TOPI_BROADCAST_H_
#define TOPI_BROADCAST_H_

#include <topi/detail/broadcast.h>
#include <string>

#include "topi/detail/broadcast.h"
#include "topi/tags.h"

namespace topi {

inline tvm::Tensor broadcast_to(const tvm::Tensor& I,
const tvm::Array<tvm::Expr>& output_shape) {
CHECK_GE(output_shape.size(), I->shape.size())
/*!
* \brief Creates an operation that broadcasts a tensor into a compatible
* shape according to numpy's rules
*
* \param t The input tensor
* \param output_shape The target output shape, must be compatible
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a broadcast operation
*/
inline tvm::Tensor broadcast_to(const tvm::Tensor& t,
const tvm::Array<tvm::Expr>& output_shape,
std::string name = "tensor",
std::string tag = kBroadcast) {
CHECK_GE(output_shape.size(), t->shape.size())
<< "Not a broadcast, output dimensionality smaller than input.\noutput: "
<< output_shape << "\nvs\ninput: " << I;
auto bh = detail::BroadcastShape(output_shape, I->shape);
<< output_shape << "\nvs\ninput: " << t;
auto bh = detail::BroadcastShape(output_shape, t->shape);
CHECK_EQ(output_shape.size(), bh.common_shape.size());
for (int i = 0; i < output_shape.size(); ++i) {
CHECK(tvm::ir::Equal(output_shape[i], bh.common_shape[i]));
}
auto l = [&](tvm::Array<tvm::Var> ovars) {
return I(detail::InputIndexFromBroadcast(ovars, I, bh.vars2, bh.all_vars));
return t(detail::InputIndexFromBroadcast(ovars, t, bh.vars2, bh.all_vars));
};
return tvm::compute(
tvm::Array<tvm::Expr>(bh.common_shape.begin(), bh.common_shape.end()), l);
tvm::Array<tvm::Expr>(bh.common_shape.begin(), bh.common_shape.end()),
l,
name,
tag);
}

inline tvm::Tensor broadcast_add(const tvm::Tensor& A, const tvm::Tensor& B) {
/*!
* \brief Creates an operation that performs pointwise addition of 2 tensors
* and broadcasts them into a common compatible shape where necessary,
* according to numpy's rules
*
* \param A The first tensor to add
* \param B The second tensor to add
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a pointwise addition with broadcast
*/
inline tvm::Tensor broadcast_add(const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = kBroadcast) {
auto l = [&](tvm::Expr a, tvm::Expr b) { return a + b; };
return detail::WithBroadcast(l, A, B);
return detail::WithBroadcast(l, A, B, name, tag);
}

inline tvm::Tensor broadcast_sub(const tvm::Tensor& A, const tvm::Tensor& B) {
/*!
* \brief Creates an operation that performs pointwise subtraction of 2 tensors
* and broadcasts them into a common compatible shape where necessary,
* according to numpy's rules
*
* \param A The first tensor
* \param B The second tensor to subtract from the first
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a pointwise subtraction with broadcast
*/
inline tvm::Tensor broadcast_sub(const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = kBroadcast) {
auto l = [&](tvm::Expr a, tvm::Expr b) { return a - b; };
return detail::WithBroadcast(l, A, B);
return detail::WithBroadcast(l, A, B, name, tag);
}

inline tvm::Tensor broadcast_mul(const tvm::Tensor& A, const tvm::Tensor& B) {
/*!
* \brief Creates an operation that performs pointwise multiplication of 2
* tensors and broadcasts them into a common compatible shape where necessary,
* according to numpy's rules
*
* \param A The first tensor to multiply
* \param B The second tensor to multiply
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a pointwise multiplication with broadcast
*/
inline tvm::Tensor broadcast_mul(const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = kBroadcast) {
auto l = [&](tvm::Expr a, tvm::Expr b) { return a * b; };
return detail::WithBroadcast(l, A, B);
return detail::WithBroadcast(l, A, B, name, tag);
}

inline tvm::Tensor broadcast_div(const tvm::Tensor& A, const tvm::Tensor& B) {
/*!
* \brief Creates an operation that performs pointwise division of 2 tensors
* and broadcasts them into a common compatible shape where necessary,
* according to numpy's rules
*
* \param A The first tensor
* \param B The second tensor to divide the first tensor with
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a pointwise division with broadcast
*/
inline tvm::Tensor broadcast_div(const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = kBroadcast) {
auto l = [&](tvm::Expr a, tvm::Expr b) { return a / b; };
return detail::WithBroadcast(l, A, B);
return detail::WithBroadcast(l, A, B, name, tag);
}

inline tvm::Tensor broadcast_mod(const tvm::Tensor& A, const tvm::Tensor& B) {
/*!
* \brief Creates an operation that performs pointwise modulo remainder of 2
* tensors and broadcasts them into a common compatible shape where necessary,
* according to numpy's rules
*
* \param A The first tensor
* \param B The second tensor to compute A % B
* \param name The name of the operation
* \param tag The tag to mark the operation
*
* \return A Tensor whose op member is a pointwise modulo remainder with
* broadcast
*/
inline tvm::Tensor broadcast_mod(const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = kBroadcast) {
auto l = [&](tvm::Expr a, tvm::Expr b) { return a % b; };
return detail::WithBroadcast(l, A, B);
return detail::WithBroadcast(l, A, B, name, tag);
}

} // namespace topi
Expand Down
17 changes: 12 additions & 5 deletions topi/include/topi/detail/broadcast.h
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
/*
/*!
* Copyright (c) 2017 by Contributors
* \brief Detail broadcast.
* \file broadcast.h
* \file topi/detail/broadcast.h
*/
#ifndef TOPI_DETAIL_BROADCAST_H_
#define TOPI_DETAIL_BROADCAST_H_

#include <algorithm>
#include <deque>
#include <string>

#include "tvm/ir_pass.h"
#include "tvm/tvm.h"
Expand Down Expand Up @@ -90,15 +91,21 @@ inline tvm::Array<tvm::Expr> InputIndexFromBroadcast(


template <typename FBinaryExpr>
inline tvm::Tensor WithBroadcast(FBinaryExpr op, const tvm::Tensor& A,
const tvm::Tensor& B) {
inline tvm::Tensor WithBroadcast(FBinaryExpr op,
const tvm::Tensor& A,
const tvm::Tensor& B,
std::string name = "tensor",
std::string tag = "") {
auto bh = BroadcastShape(A->shape, B->shape);
auto l = [&](tvm::Array<tvm::Var> ovars) {
return op(A(InputIndexFromBroadcast(ovars, A, bh.vars1, bh.all_vars)),
B(InputIndexFromBroadcast(ovars, B, bh.vars2, bh.all_vars)));
};
return tvm::compute(
tvm::Array<tvm::Expr>(bh.common_shape.begin(), bh.common_shape.end()), l);
tvm::Array<tvm::Expr>(bh.common_shape.begin(), bh.common_shape.end()),
l,
name,
tag);
}

} // namespace detail
Expand Down
17 changes: 11 additions & 6 deletions topi/include/topi/ewise.h
Original file line number Diff line number Diff line change
Expand Up @@ -6,17 +6,22 @@
#ifndef TOPI_EWISE_H_
#define TOPI_EWISE_H_

#include <tvm/tvm.h>
#include <string>

#include "topi/tags.h"
#include "tvm/tvm.h"

namespace topi {
using namespace tvm;

// Unary intrinsic operators
#define TOPI_DECLARE_UNARY_OP(OpName) \
inline Tensor OpName(const Tensor& x) { \
return compute(x->shape, [&](const Array<Var>& i) { \
return ::tvm::OpName(x(i)); \
}, "tensor", "ewise"); \
#define TOPI_DECLARE_UNARY_OP(OpName) \
inline Tensor OpName(const Tensor& x, \
std::string name = "tensor", \
std::string tag = kElementWise) { \
return compute(x->shape, [&](const Array<Var>& i) { \
return ::tvm::OpName(x(i)); \
}, name, tag); \
}

TOPI_DECLARE_UNARY_OP(exp);
Expand Down
Loading

0 comments on commit cbdd14f

Please sign in to comment.