Skip to content

Commit

Permalink
[Relay][Pass] Count MAC for BatchMatMul (#4157)
Browse files Browse the repository at this point in the history
* count MAC for BatchMatMul

* update doc
  • Loading branch information
icemelon authored and zhiics committed Oct 21, 2019
1 parent d660e51 commit e0d286a
Showing 1 changed file with 29 additions and 10 deletions.
39 changes: 29 additions & 10 deletions src/relay/pass/mac_count.cc
Original file line number Diff line number Diff line change
Expand Up @@ -66,21 +66,21 @@ int64_t ConvMacCount(const Call& call_node) {
return 0;
}
Array<Expr> args = call_node->args;
CHECK(args.size() == 2)
CHECK_EQ(args.size(), 2)
<< "The number of input arguments of a CONV 2D node should be 2.";
const auto* conv_2d_attr = call_node->attrs.as<Conv2DAttrs>();
const auto* data_type = args[0]->checked_type().as<TensorTypeNode>();
Array<IndexExpr> data_shape = data_type->shape;
std::string data_layout = conv_2d_attr->data_layout;
int32_t C_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('C'));
int32_t c_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('c'));
CHECK(C_ind != -1)
CHECK_NE(C_ind, -1)
<< "There is no input channel dimension.";
int64_t input_channel = static_cast<int64_t>(data_shape[C_ind].as<IntImm>()->value);
if (c_ind != -1)
input_channel *= static_cast<int64_t>(data_shape[c_ind].as<IntImm>()->value);
Array<IndexExpr> kernel_size = conv_2d_attr->kernel_size;
CHECK(kernel_size.size() == 2)
CHECK_EQ(kernel_size.size(), 2)
<< "The dimension of the kernel in Conv 2D should be 2.";
const auto* expr = call_node->checked_type().as<TensorTypeNode>();
Array<IndexExpr> output_tensor = expr->shape;
Expand All @@ -99,21 +99,21 @@ int64_t Conv2dTransposeMacCount(const Call& call_node) {
return 0;
}
Array<Expr> args = call_node->args;
CHECK(args.size() == 2)
CHECK_EQ(args.size(), 2)
<< "The number of input arguments of a CONV 2D Transpose node should be 2.";
const auto* conv_2d_transpose_attr = call_node->attrs.as<Conv2DTransposeAttrs>();
const auto* data_type = args[0]->checked_type().as<TensorTypeNode>();
Array<IndexExpr> data_shape = data_type->shape;
std::string data_layout = conv_2d_transpose_attr->data_layout;
int32_t C_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('C'));
int32_t c_ind = Layout(data_layout).IndexOf(LayoutAxis::Get('c'));
CHECK(C_ind != -1)
CHECK_NE(C_ind, -1)
<< "There is no input channel dimension.";
int64_t input_channel = static_cast<int64_t>(data_shape[C_ind].as<IntImm>()->value);
if (c_ind != -1)
input_channel *= static_cast<int64_t>(data_shape[c_ind].as<IntImm>()->value);
Array<IndexExpr> kernel_size = conv_2d_transpose_attr->kernel_size;
CHECK(kernel_size.size() == 2)
CHECK_EQ(kernel_size.size(), 2)
<< "The dimension of the kernel in Conv 2D Transpose should be 2.";
const auto* expr = call_node->checked_type().as<TensorTypeNode>();
Array<IndexExpr> output_tensor = expr->shape;
Expand All @@ -132,7 +132,7 @@ int64_t DenseMacCount(const Call& call_node) {
return 0;
}
Array<Expr> args = call_node->args;
CHECK(args.size() == 2)
CHECK_EQ(args.size(), 2)
<< "The number of input arguments of a Dense node should be 2.";
const auto* data_type = args[0]->checked_type().as<TensorTypeNode>();
const auto* weight_type = args[1]->checked_type().as<TensorTypeNode>();
Expand All @@ -144,12 +144,28 @@ int64_t DenseMacCount(const Call& call_node) {
int64_t d2 = static_cast<int64_t>(data_shape[1].as<IntImm>()->value);
int64_t d3 = static_cast<int64_t>(weight_shape[0].as<IntImm>()->value);
int64_t d4 = static_cast<int64_t>(weight_shape[1].as<IntImm>()->value);
CHECK(d2 == d4)
CHECK_EQ(d2, d4)
<< "The dimensions of input arguments do not match.";
int64_t count = d1 * d2 * d3;
return count;
}

int64_t BatchMatmulMacCount(const Call& call_node) {
if (!call_node->checked_type_.defined()) {
LOG(WARNING) << "The infer type pass should be called before the mac count pass";
return 0;
}
Array<Expr> args = call_node->args;
CHECK_EQ(args.size(), 2);
Array<IndexExpr> x_shape = args[0]->checked_type().as<TensorTypeNode>()->shape;
Array<IndexExpr> y_shape = args[1]->checked_type().as<TensorTypeNode>()->shape;
int64_t batch = x_shape[0].as<IntImm>()->value;
int64_t m = x_shape[1].as<IntImm>()->value;
int64_t k = x_shape[2].as<IntImm>()->value;
int64_t n = y_shape[1].as<IntImm>()->value;
return batch * m * k * n;
}

RELAY_REGISTER_OP("nn.conv2d")
.set_attr<FMacCount>("FMacCount", ConvMacCount);

Expand All @@ -159,14 +175,17 @@ RELAY_REGISTER_OP("nn.conv2d_transpose")
RELAY_REGISTER_OP("nn.dense")
.set_attr<FMacCount>("FMacCount", DenseMacCount);

RELAY_REGISTER_OP("nn.batch_matmul")
.set_attr<FMacCount>("FMacCount", BatchMatmulMacCount);

class MacCounter : private ExprVisitor {
public:
MacCounter() {
count_ = 0;
}
static int64_t GetTotalMacNumber(const Expr& expr) {
LOG(INFO) << "This pass only counts MACs in direct CONV 2D, "
<< "CONV 2D Transpose and Dense ops";
LOG(INFO) << "This pass only counts MACs in direct conv2d, "
<< "conv2d_transpose, dense, and batch_matmul ops";
MacCounter counter;
counter(expr);
return counter.count_;
Expand Down

0 comments on commit e0d286a

Please sign in to comment.