Skip to content

Commit

Permalink
[Runtime][PipelineExecutor] Tutorial of using pipeline executor. (#11557
Browse files Browse the repository at this point in the history
)

* [Runtime][PipelineExecutor]  Tutorial of using pipeline executor.

Tutorial of using pipeline executor including the byoc use case.

* fix ci issue

* document change.

* triger build

* fix doc issue

* fix ci issue

* doc issue

* fix ci issue

* fix ci issue.

* fix __file__ not found problem.

this is a known issue of sphinx-gallery
sphinx-gallery/sphinx-gallery#211

* fix byoc with dnnl issue

* enable dnnl and pipeline executor

* trigger build

* trigger build

* fix build issue

* trigger build

* oneflow cause crash, do test with change

* add sphinx skip

* plint

* remove from_oneflow change test.

* remove pipeline executor change for test

* plint

* enable DNNL and pipeline

* disable DNNL

* enable DNNL without pipeline

* remove dnnl and add cutlass

* use cutlass with byoc

* change into cutlass

* fix doc convention issue

* remove duplicate variable

* fix plint issue.

* address review comments.

* address review comments

* fix bug.

* polish the document

* fix plint issue

* address review comments.

* address review comments

* address review comments
  • Loading branch information
huajsj authored Jul 22, 2022
1 parent 9863cf0 commit ecd3c88
Show file tree
Hide file tree
Showing 4 changed files with 281 additions and 9 deletions.
248 changes: 248 additions & 0 deletions gallery/how_to/work_with_relay/using_pipeline_executor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Using Pipeline Executor in Relay
=================================
**Author**: `Hua Jiang <https://https://github.com/huajsj>`_
This is a short tutorial on how to use "Pipeline Executor" with Relay.
"""
import tvm
from tvm import te
import numpy as np
from tvm.contrib import graph_executor as runtime
from tvm.relay.op.contrib.cutlass import partition_for_cutlass
from tvm import relay
from tvm.relay import testing
import tvm.testing
from tvm.contrib.cutlass import (
has_cutlass,
num_cutlass_partitions,
finalize_modules,
finalize_modules_vm,
)

img_size = 8
#######################################################################
# Create a simple network, this network can be a pre-trained model too.
# ---------------------------------------------------------------------
# Let's create a very simple network for demonstration.
# It consists of convolution, batch normalization, dense, and ReLU activation.
def get_network():
out_channels = 16
batch_size = 1
data = relay.var("data", relay.TensorType((batch_size, 3, img_size, img_size), "float16"))
dense_weight = relay.var(
"dweight", relay.TensorType((batch_size, 16 * img_size * img_size), "float16")
)
weight = relay.var("weight")
second_weight = relay.var("second_weight")
bn_gamma = relay.var("bn_gamma")
bn_beta = relay.var("bn_beta")
bn_mmean = relay.var("bn_mean")
bn_mvar = relay.var("bn_var")
simple_net = relay.nn.conv2d(
data=data, weight=weight, kernel_size=(3, 3), channels=out_channels, padding=(1, 1)
)
simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]
simple_net = relay.nn.relu(simple_net)
simple_net = relay.nn.batch_flatten(simple_net)
simple_net = relay.nn.dense(simple_net, dense_weight)
simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net)
data_shape = (batch_size, 3, img_size, img_size)
net, params = testing.create_workload(simple_net)
return net, params, data_shape


net, params, data_shape = get_network()
###########################################
# Splitting the network into two subgraphs.
# -----------------------------------------
# This function called 'graph_split' from a unit test is just an example. User can create a customized logic
# to split the graph.
import inspect
import os

tutorial_dir = os.path.dirname(inspect.getfile(lambda: None))
os.sys.path.append(os.path.join(tutorial_dir, "../../../tests/python/relay"))
from test_pipeline_executor import graph_split

###########################################
# Splitting the network into two subgraphs.
split_config = [{"op_name": "nn.relu", "op_index": 0}]
subgraphs = graph_split(net["main"], split_config, params)
###########################################################
# The generated subgraphs should look something like below.

"""
#subgraphs[0])
def @main(%data: Tensor[(1, 3, img_size, img_size), float16]) {
%0 = nn.conv2d(%data, meta[relay.Constant][0] /* ty=Tensor[(16, 3, 3, 3), float16] */, padding=[1, 1, 1, 1], channels=16, kernel_size=[3, 3]) /* ty=Tensor[(1, 16, img_size, img_size), float16] */;
%1 = nn.batch_norm(%0, meta[relay.Constant][1] /* ty=Tensor[(16), float16] */, meta[relay.Constant][2] /* ty=Tensor[(16), float16]*/, meta[relay.Constant][3] /* ty=Tensor[(16), float16] */, meta[relay.Constant][4] /* ty=Tensor[(16), float16] */) /* ty=(Tensor[(1,16, img_size, img_size), float16], Tensor[(16), float16], Tensor[(16), float16]) */;
%2 = %1.0;
nn.relu(%2) /* ty=Tensor[(1, 16, img_size, img_size), float16] */
}
#subgraphs[1]
def @main(%data_n_0: Tensor[(1, 16, 8, 8), float16] /* ty=Tensor[(1, 16, 8, 8), float16] */) {
%0 = nn.batch_flatten(%data_n_0) /* ty=Tensor[(1, 1024), float16] */;
nn.dense(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 1024), float16] */, units=None) /* ty=Tensor[(1, 1), float16] */
}
"""

# sphinx_gallery_start_ignore
from tvm import testing

testing.utils.install_request_hook(depth=3)
# sphinx_gallery_end_ignore

#########################################
# Build the subgraph with cutlass target.
# ---------------------------------------

cutlass = tvm.target.Target(
{
"kind": "cutlass",
"sm": int(tvm.target.Target("cuda").arch.split("_")[1]),
"use_3xtf32": True,
"split_k_slices": [1],
"profile_all_alignments": False,
"find_first_valid": True,
"use_multiprocessing": True,
"use_fast_math": False,
"tmp_dir": "./tmp",
},
host=tvm.target.Target("llvm"),
)


def cutlass_build(mod, target, params=None, target_host=None, mod_name="default"):
target = [target, cutlass]
lib = relay.build_module.build(
mod, target=target, params=params, target_host=target_host, mod_name=mod_name
)
return lib


###########################################################
# Run the two subgraphs in pipeline with pipeline executor.
# ---------------------------------------------------------
# Set 'USE_PIPELINE_EXECUTOR' as ON, and set USE_CUTLASS' as ON in cmake.
from tvm.contrib import graph_executor, pipeline_executor, pipeline_executor_build

#########################################
# Create subgraph pipeline configuration.
# Associate a subgraph module with a target.
# Use CUTLASS BYOC to build the second subgraph module.
mod0, mod1 = subgraphs[0], subgraphs[1]
# Use cutlass as the codegen.
mod1 = partition_for_cutlass(mod1)
#################################################
# Get the pipeline executor configuration object.
pipe_config = pipeline_executor_build.PipelineConfig()
###########################################################################
# Set the compile target of the subgraph module.
pipe_config[mod0].target = "llvm"
pipe_config[mod0].dev = tvm.cpu(0)
##############################################################
# Set the compile target of the second subgraph module as cuda.
pipe_config[mod1].target = "cuda"
pipe_config[mod1].dev = tvm.device("cuda", 0)
pipe_config[mod1].build_func = cutlass_build
pipe_config[mod1].export_cc = "nvcc"
# Create the pipeline by connecting the subgraph modules.
# The global input will be forwarded to the input interface of the first module named mod0
pipe_config["input"]["data"].connect(pipe_config[mod0]["input"]["data"])
# The first output of mod0 will be forwarded to the input interface of mod1
pipe_config[mod0]["output"][0].connect(pipe_config[mod1]["input"]["data_n_0"])
# The first output of mod1 will be the first global output.
pipe_config[mod1]["output"][0].connect(pipe_config["output"][0])
######################################
# The pipeline configuration as below.
"""
print(pipe_config)
Inputs
|data: mod0:data
output
|output(0) : mod1.output(0)
connections
|mod0.output(0)-> mod1.data_n_0
"""

# sphinx_gallery_start_ignore
from tvm import testing

# testing.utils.install_request_hook(depth=3)
# sphinx_gallery_end_ignore
##############################
# Build the pipeline executor.
# ----------------------------
with tvm.transform.PassContext(opt_level=3):
pipeline_mod_factory = pipeline_executor_build.build(pipe_config)
###############################################
# Export the parameter configuration to a file.
directory_path = tvm.contrib.utils.tempdir().temp_dir
os.makedirs(directory_path, exist_ok=True)
config_file_name = pipeline_mod_factory.export_library(directory_path)
################################################################
# Use the load function to create and initialize PipelineModule.
# --------------------------------------------------------------
pipeline_module = pipeline_executor.PipelineModule.load_library(config_file_name)

############################
# Run the pipeline executor.
# --------------------------
# Allocate input data.
data = np.random.uniform(-1, 1, size=data_shape).astype("float16")
pipeline_module.set_input("data", tvm.nd.array(data))
##########################################################################
# Run the two subgraph in the pipeline mode to get the output asynchronously
# or synchronously. In the following example, it is synchronous.
pipeline_module.run()
outputs = pipeline_module.get_output()
######################################
# Use graph_executor for verification.
# ------------------------------------
# Run these two subgraphs in sequence with graph_executor to get the output.
target = "llvm"
dev0 = tvm.device(target, 0)
lib0 = relay.build_module.build(mod0, target, params=params)
module0 = runtime.GraphModule(lib0["default"](dev0))
cuda = tvm.target.Target("cuda", host=tvm.target.Target("llvm"))
lib1 = relay.build_module.build(mod1, [cuda, cutlass], params=params)
lib1 = finalize_modules(lib1, "compile.so", "./tmp")

dev1 = tvm.device("cuda", 0)

module1 = runtime.GraphModule(lib1["default"](dev1))

module0.set_input("data", data)
module0.run()
out_shape = (1, 16, img_size, img_size)
out = module0.get_output(0, tvm.nd.empty(out_shape, "float16"))
module1.set_input("data_n_0", out)
module1.run()
out_shape = (1, 1)
out = module1.get_output(0, tvm.nd.empty(out_shape, "float16"))
####################
# Verify the result.
tvm.testing.assert_allclose(outputs[0].numpy(), out.numpy())
26 changes: 22 additions & 4 deletions python/tvm/contrib/pipeline_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
"""Pipeline executor that executes a series of modules in a pipeline fashion."""
import json
import os
import time
from tvm import runtime
from tvm._ffi import get_global_func
from tvm.contrib import graph_executor
Expand Down Expand Up @@ -131,14 +132,26 @@ def get_input(self, key):
"""
return self._get_input(key)

def get_output(self):
def get_output(self, synchronize=True, sleep_interval=0.001):
"""Get the output.
Returns
-------
data : Array[NDArray]
A list of output data.
synchronize : BOOL
Whether to do a synchronize poll.
sleep_interval : Float32
When doing the synchronize loop poll, how many seconds the loop should sleep for yield.
"""
return self._get_output()
outputs = []
if not synchronize:
outputs = self._get_output()
else:
while not outputs:
outputs = self._get_output()
time.sleep(sleep_interval)

return outputs

@property
def num_executing_pipeline(self):
Expand Down Expand Up @@ -302,11 +315,16 @@ def export_library(self, directory_path):
self.pipeline_mods[lib_index]["dev"].device_type,
self.pipeline_mods[lib_index]["dev"].device_id,
)

# Get the graph, lib, and parameters from GraphExecutorFactoryModule.
lib = self.pipeline_mods[lib_index]["lib"]
# Export the lib, graph, and parameters to disk.
lib.export_library(mconfig["lib_name"])
if self.pipeline_mods[lib_index]["export_cc"]:
lib.export_library(
mconfig["lib_name"], cc=self.pipeline_mods[lib_index]["export_cc"]
)
else:
lib.export_library(mconfig["lib_name"])

with open(mconfig["json_name"], "w") as file_handle:
file_handle.write(lib.graph_json)
with open(mconfig["params_name"], "wb") as file_handle:
Expand Down
14 changes: 9 additions & 5 deletions python/tvm/contrib/pipeline_executor_build.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,12 @@ def build(pipe_configs):
# Use "mod_idx" as the key to create a "module_connection" map which is not only
# for the module index but also for the module connection used to build the pipeline.
module_string_config[mod_idx] = pipe_config
libs[mod_idx] = {"lib": lib, "dev": dev, "fcompile": mod_config["fcompile"]}
libs[mod_idx] = {
"lib": lib,
"dev": dev,
"fcompile": mod_config["fcompile"],
"export_cc": mod_config["export_cc"],
}

# Creating a text form configuration to record the "input_connection" and the
# "module_connection" information. The "input_connection" is used to record the
Expand Down Expand Up @@ -132,10 +137,7 @@ def export_library(factory, directory_path):
mconfig["json_name"] = "{}/json{}".format(directory_path, lib_index)
mconfig["params_name"] = "{}/params{}".format(directory_path, lib_index)
lib_config = factory.pipeline_mods[lib_index]
mconfig["dev"] = "{},{}".format(
lib_config["dev"].device_type,
lib_config["dev"].device_id,
)
mconfig["dev"] = "{},{}".format(lib_config["dev"].device_type, lib_config["dev"].device_id)
fcompile = lib_config["fcompile"]
if not fcompile:
fcompile = False
Expand Down Expand Up @@ -413,6 +415,7 @@ def __init__(self, mod=None):
self.fcompile = None
self.name = None
self.dev = None
self.export_cc = None
self.cpu_affinity = ""
self.idx = None
self.mod = mod
Expand Down Expand Up @@ -601,6 +604,7 @@ def get_config(self):
"target": module.target,
"fcompile": module.fcompile,
"dev": module.dev,
"export_cc": module.export_cc,
}

# Creating a map including pipeline inputs and subgraph inputs.
Expand Down
2 changes: 2 additions & 0 deletions tests/scripts/task_config_build_gpu.sh
Original file line number Diff line number Diff line change
Expand Up @@ -47,3 +47,5 @@ echo set\(USE_LIBBACKTRACE AUTO\) >> config.cmake
echo set\(USE_CCACHE OFF\) >> config.cmake
echo set\(SUMMARIZE ON\) >> config.cmake
echo set\(HIDE_PRIVATE_SYMBOLS ON\) >> config.cmake
echo set\(USE_PIPELINE_EXECUTOR ON\) >> config.cmake
echo set\(USE_CUTLASS ON\) >> config.cmake

0 comments on commit ecd3c88

Please sign in to comment.