Skip to content

Commit

Permalink
[ETHOSN] Implement tanh operator
Browse files Browse the repository at this point in the history
Adding compiler support for TANH operator, which is based on
an underlying pattern matching scheme.

One negative test is included as well.
  • Loading branch information
spanijelatarm committed Feb 14, 2022
1 parent 55849e6 commit f6e4297
Show file tree
Hide file tree
Showing 6 changed files with 158 additions and 0 deletions.
12 changes: 12 additions & 0 deletions python/tvm/relay/op/contrib/ethosn.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,11 @@ def qnn_mean_pattern():
pattern = is_op("qnn.requantize")(
pattern, is_constant(), is_constant(), is_constant(), is_constant()
)

def qnn_tanh_pattern():
pattern = is_op("qnn.dequantize")(wildcard(), is_constant(), is_constant())
pattern = is_op("tanh")(pattern)
pattern = is_op("qnn.quantize")(pattern, is_constant(), is_constant())
return pattern

def check_conv2d(extract):
Expand Down Expand Up @@ -200,12 +205,19 @@ def check_sigmoid(extract):

return support.sigmoid(extract)

def check_tanh(extract):
"""Check if tanh is supported by Ethos(TM)-N NPU."""
if not ethosn_available():
return False
return support.tanh(extract)

return [
("ethos-n.qnn_conv2d", qnn_conv_pattern(), check_conv2d),
("ethos-n.qnn_avg_pool2d", qnn_avg_pool2d_pattern(), check_avg_pool2d),
("ethos-n.qnn_sigmoid", qnn_sigmoid_pattern(), check_sigmoid),
("ethos-n.qnn_fc", qnn_fc_pattern(), check_fc),
("ethos-n.qnn_mean", qnn_mean_pattern(), check_mean),
("ethos-n.qnn_tanh", qnn_tanh_pattern(), check_tanh),
]


Expand Down
30 changes: 30 additions & 0 deletions src/relay/backend/contrib/ethosn/codegen.cc
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,10 @@ void InferTensorsVisitor::InferCall(const CallNode* cn) {
MeanParams params;
err += EthosnAPI::Mean(cn->op.as<FunctionNode>()->body, &params);
tensor_table_[cn->args[0]] = {params.input_info};
} else if (IsEthosnFunc(call, "ethos-n.qnn_tanh")) {
TanhParams params;
err += EthosnAPI::Tanh(cn->op.as<FunctionNode>()->body, &params);
tensor_table_[cn->args[0]] = {params.input_info};
} else if (IsEthosnOp(call, "qnn.concatenate")) {
ConcatenateParams params;
err = EthosnAPI::Concatenate(call, &params);
Expand Down Expand Up @@ -283,6 +287,9 @@ sl::TensorsAndId ConstructNetworkVisitor::HandleCall(const CallNode* cn) {
} else if (IsEthosnFunc(call, "ethos-n.qnn_mean")) {
if ((err = MakeMeanLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnFunc(call, "ethos-n.qnn_tanh")) {
if ((err = MakeTanhLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
} else if (IsEthosnOp(call, "qnn.concatenate")) {
if ((err = MakeConcatenateLayer(call, &tensor))) ReportFatalError(call, err);
return MakeOps(tensor);
Expand Down Expand Up @@ -473,6 +480,18 @@ EthosnError ConstructNetworkVisitor::MakeMeanLayer(const Call& call,
return EthosnError();
}

EthosnError ConstructNetworkVisitor::MakeTanhLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
auto input = operand_table_[call->args[0]][0];

try {
*out = AddTanh(network_, *input);
} catch (const sl::NotSupportedException& e) {
return EthosnError(e.what());
}
return EthosnError();
}

EthosnError ConstructNetworkVisitor::MakeConcatenateLayer(const Call& call,
sl::TensorAndId<sl::Operand>* out) {
ConcatenateParams params;
Expand Down Expand Up @@ -767,6 +786,17 @@ TVM_REGISTER_GLOBAL("relay.ethos-n.support.mean")
err += EthosnError(reason);
});

TVM_REGISTER_GLOBAL("relay.ethos-n.support.tanh")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
TanhParams params;

auto err = EthosnAPI::Tanh(call, &params);
err += EthosnCompiler::SupportedSetup();
*rv = !err && EthosnCompiler::GetSupported()->IsTanhSupported(params.input_info);
std::cout << "hello" << std::endl;
});

TVM_REGISTER_GLOBAL("relay.ethos-n.support.concatenate")
.set_body([](tvm::TVMArgs args, tvm::TVMRetValue* rv) {
Call call = args[0];
Expand Down
1 change: 1 addition & 0 deletions src/relay/backend/contrib/ethosn/codegen_ethosn.h
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@ class ConstructNetworkVisitor : public MixedModeVisitor, private ErrorReportingP
EthosnError MakeAdditionLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeSigmoidLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeMeanLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeTanhLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeConcatenateLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
EthosnError MakeSplitLayer(const Call& call, sl::TensorsAndId* outs);
EthosnError MakeDepthToSpaceLayer(const Call& call, sl::TensorAndId<sl::Operand>* out);
Expand Down
28 changes: 28 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.cc
Original file line number Diff line number Diff line change
Expand Up @@ -403,6 +403,34 @@ EthosnError EthosnAPI::Mean(const Expr& expr, MeanParams* params) {
return err;
}

EthosnError EthosnAPI::Tanh(const Expr& expr, TanhParams* params) {
Call quantize = Downcast<Call>(expr);
Call tanh = Downcast<Call>(quantize->args[0]);
Call dequantize = Downcast<Call>(tanh->args[0]);
// Create input info
const auto* input_dtype = quantize->checked_type().as<TensorTypeNode>();
sl::TensorShape input_tensor_shape = {1, 1, 1, 1};
sl::DataType input_tensor_dtype;
EthosnError err = Tvm2Npu(input_dtype->shape, &input_tensor_shape);
err += Tvm2Npu(input_dtype->dtype, &input_tensor_dtype);
float input_sc;
int input_zp;
err += AsConstant(dequantize->args[2], &input_zp);
err += AsConstant(dequantize->args[1], &input_sc);
float output_sc;
int output_zp;
err += AsConstant(quantize->args[2], &output_zp);
err += AsConstant(quantize->args[1], &output_sc);
auto test_zp = input_dtype->dtype.is_uint() ? 128 : 0;
if (output_zp != test_zp || output_sc != 0.0078125f) {
err += EthosnError(ErrStrm() << "output quantization params=(" << output_zp << ", " << output_sc
<< "), must = (" << test_zp << ", 1/256)");
}
params->input_info = sl::TensorInfo(input_tensor_shape, input_tensor_dtype, sl::DataFormat::NHWC,
sl::QuantizationInfo(input_zp, input_sc));
return err;
}

EthosnError EthosnAPI::Concatenate(const Expr& expr, ConcatenateParams* params) {
Call call = Downcast<Call>(expr);
const auto& attrs = call->attrs.as<ConcatenateAttrs>();
Expand Down
6 changes: 6 additions & 0 deletions src/relay/backend/contrib/ethosn/ethosn_api.h
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,10 @@ struct MeanParams {
sl::TensorInfo input_info;
};

struct TanhParams {
sl::TensorInfo input_info;
};

struct ConcatenateParams {
sl::QuantizationInfo qInfo;
sl::ConcatenationInfo concat_info = sl::ConcatenationInfo(1, qInfo);
Expand Down Expand Up @@ -195,6 +199,8 @@ class EthosnAPI {
static EthosnError Sigmoid(const Expr& expr, SigmoidParams* params);
/*! \brief Extract the Support Library mean params from a mean func */
static EthosnError Mean(const Expr& expr, MeanParams* params);
/*! \brief Extract the Support Library tanh params from a Relay an ethos-n tanh func */
static EthosnError Tanh(const Expr& expr, TanhParams* params);
/*! \brief Extract the Support Library concatenate params from a Relay qnn.concatenate call */
static EthosnError Concatenate(const Expr& expr, ConcatenateParams* params);
/*! \brief Extract the Support Library split params from a Relay split call */
Expand Down
81 changes: 81 additions & 0 deletions tests/python/contrib/test_ethosn/test_tanh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Arm(R) Ethos(TM)-N NPU integration tanh tests"""

import pytest
import numpy as np
import tvm
from tvm import relay
from tvm.testing import requires_ethosn
from . import infrastructure as tei


def _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype):
a = relay.var("a", shape=shape, dtype=dtype)
dequantize = relay.qnn.op.dequantize(
a,
input_scale=relay.const(input_sc, "float32"),
input_zero_point=relay.const(input_zp, "int32"),
)
tanh = relay.tanh(dequantize)
model = relay.qnn.op.quantize(
tanh,
output_scale=relay.const(output_sc, "float32"),
output_zero_point=relay.const(output_zp, "int32"),
out_dtype=dtype,
)
return model


@requires_ethosn
def test_tanh():
trials = [(1, 512, 512, 3)]

np.random.seed(0)
for shape in trials:
inputs = {
"a": tvm.nd.array(np.random.randint(0, high=255, size=shape, dtype="uint8")),
}
outputs = []
for npu in [False, True]:
model = _get_model(shape, 120, 0.0250629, 128, 0.0078125, "uint8")
mod = tei.make_module(model, [])
outputs.append(tei.build_and_run(mod, inputs, 1, {}, npu=npu))

tei.verify(outputs, "uint8", 1)


@requires_ethosn
def test_tanh_failure():
trials = [
(
(1, 16, 16, 16),
120,
0.0250629,
64,
0.0078125,
"uint8",
"output quantization params=(64, 0.0078125), must = (0, 1/256);",
),
]

for shape, input_zp, input_sc, output_zp, output_sc, dtype, err_msg in trials:
model = _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype)
model = tei.make_ethosn_composite(model, "ethos-n.qnn_sigmoid")
mod = tei.make_ethosn_partition(model)
tei.test_error(mod, {}, err_msg)

0 comments on commit f6e4297

Please sign in to comment.