Skip to content

Commit

Permalink
[TIR] VNNI and ARM dot product intrinsic for tensorization (#10925)
Browse files Browse the repository at this point in the history
  • Loading branch information
masahi authored Apr 8, 2022
1 parent 19784c8 commit fc04738
Show file tree
Hide file tree
Showing 7 changed files with 311 additions and 62 deletions.
4 changes: 3 additions & 1 deletion python/tvm/script/tir/__init__.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,8 @@ def Select(cond: PrimExpr, if_body: PrimExpr, else_body: PrimExpr) -> PrimExpr:
def if_then_else(cond: PrimExpr, t: PrimExpr, f: PrimExpr, dtype: str) -> PrimExpr: ...
def evaluate(value: PrimExpr) -> None: ...
def reinterpret(value: PrimExpr, dtype: str) -> PrimExpr: ...
def vectorlow(value: PrimExpr, dtype: str) -> PrimExpr: ...
def vectorhigh(value: PrimExpr, dtype: str) -> PrimExpr: ...
def store(
var: Var, index: PrimExpr, value: PrimExpr, predicate: Union[PrimExpr, builtins.bool] = True
) -> None: ...
Expand All @@ -143,7 +145,7 @@ def preflattened_buffer(
) -> Buffer: ...

"""
Intrinsics - tvm builtin
Intrinsics - tvm builtin
"""

def tvm_thread_allreduce(
Expand Down
9 changes: 4 additions & 5 deletions python/tvm/script/tir/special_stmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,9 @@

import tvm.tir
from tvm.runtime import Object, String
from tvm import te
from tvm.target import Target
from tvm.ir import Span
from tvm.tir import IntImm, IterVar
from tvm.tir import IntImm, IterVar, Var

from .node import BufferSlice
from .utils import buffer_slice_to_region
Expand Down Expand Up @@ -800,7 +799,7 @@ def var(dtype, span):
self.context.report_error(
f"VarDef expected assign to only one var, but got {names}", span
)
v = te.var(names[0], dtype, span=span)
v = Var(names[0], dtype, span=span)
self.context.update_symbol(v.name, v, self.node)

super().__init__(var, def_symbol=True)
Expand All @@ -821,7 +820,7 @@ def buffer_var(dtype, storage_scope, span):
f"VarDef expected assign to only one var, but got {names}", span
)
ptr_type = tvm.ir.PointerType(tvm.ir.PrimType(dtype), storage_scope)
v = te.var(names[0], ptr_type, span=span)
v = Var(names[0], ptr_type, span=span)
self.context.update_symbol(v.name, v, self.node)

super().__init__(buffer_var, def_symbol=True)
Expand All @@ -841,7 +840,7 @@ def env_thread(env_name, span):
self.context.report_error(
f"VarDef expected assign to only one var, but got {names}", span
)
v = te.var(names[0], span=span)
v = Var(names[0], dtype="int32", span=span)
self.context.func_var_env_dict[v] = env_name
self.context.update_symbol(v.name, v, self.node)

Expand Down
20 changes: 20 additions & 0 deletions python/tvm/tir/tensor_intrin/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-import
"""Intrinsics for tensorization."""
from .x86 import *
from .arm_cpu import *
142 changes: 142 additions & 0 deletions python/tvm/tir/tensor_intrin/arm_cpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,missing-function-docstring
"""Intrinsics for ARM tensorization."""
from tvm.script import tir as T
from .. import TensorIntrin


# TODO(masahi): Parametrize the TVMScript description of dot product by
# shape and dtype, and share the common description with x86.


@T.prim_func
def dot_product_4x4_i8i8i32_desc(
A: T.Buffer((4,), "int8", offset_factor=1),
B: T.Buffer((4, 4), "int8", offset_factor=1),
C: T.Buffer((4,), "int32", offset_factor=1),
) -> None:
with T.block("root"):
T.reads(C[0:4], A[0:4], B[0:4, 0:4])
T.writes(C[0:4])
for i in T.serial(0, 4):
with T.init():
C[i] = T.int32(0)
for k in T.serial(0, 4):
with T.block("update"):
vi, vk = T.axis.remap("SR", [i, k])
C[vi] = C[vi] + T.cast(A[vk], "int32") * T.cast(B[vi, vk], "int32")


@T.prim_func
def dot_product_4x4_i8i8i32_neon(
A: T.Buffer((4,), "int8", offset_factor=1),
B: T.Buffer((4, 4), "int8", offset_factor=1),
C: T.Buffer((4,), "int32", offset_factor=1),
) -> None:
with T.block("root"):
T.reads(C[0:4], A[0:4], B[0:4, 0:4])
T.writes(C[0:4])

A_int8 = A.vload([0], "int8x4")
re_int32 = T.reinterpret(A_int8, dtype="int32")
vec_ai32 = T.broadcast(re_int32, 2)
vec_a = T.reinterpret(vec_ai32, dtype="int8x8")

vec_b = B.vload([0, 0], dtype="int8x16")

# TODO(masahi): Remove duplication when inlined function call is supported
vec_b_low = T.vectorlow(vec_b, dtype="int8x8")

multiply_low = T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.smull.v8i16"),
T.uint32(2),
vec_a,
vec_b_low,
dtype="int16x8",
)

pairwise_reduction_low = T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.saddlp.v4i32.v8i16"),
T.uint32(1),
multiply_low,
dtype="int32x4",
)

vec_b_high = T.vectorhigh(vec_b, dtype="int8x8")

multiply_high = T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.smull.v8i16"),
T.uint32(2),
vec_a,
vec_b_high,
dtype="int16x8",
)

pairwise_reduction_high = T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.saddlp.v4i32.v8i16"),
T.uint32(1),
multiply_high,
dtype="int32x4",
)

C[T.ramp(T.int32(0), 1, 4)] += T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.addp.v4i32"),
T.uint32(2),
pairwise_reduction_low,
pairwise_reduction_high,
dtype="int32x4",
)


@T.prim_func
def dot_product_4x4_i8i8i32_sdot(
A: T.Buffer((4,), "int8", offset_factor=1),
B: T.Buffer((4, 4), "int8", offset_factor=1),
C: T.Buffer((4,), "int32", offset_factor=1),
) -> None:
with T.block("root"):
T.reads(C[0:4], A[0:4], B[0:4, 0:4])
T.writes(C[0:4])

A_i8x4 = A.vload([0], "int8x4")
A_i32 = T.reinterpret(A_i8x4, dtype="int32")
vec_ai32 = T.broadcast(A_i32, 4)
vec_a = T.reinterpret(vec_ai32, dtype="int8x16")

vec_b = B.vload([0, 0], dtype="int8x16")

C[T.ramp(T.int32(0), 1, 4)] += T.call_llvm_pure_intrin(
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.sdot.v4i32.v16i8"),
T.uint32(3),
T.int32x4(0),
vec_a,
vec_b,
dtype="int32x4",
)


ARM_DOT_4x4_i8_NEON_INTRIN = "dot_4x4_i8i8s32_neon"
ARM_DOT_4x4_i8_SDOT_INTRIN = "dot_4x4_i8i8s32_sdot"

TensorIntrin.register(
ARM_DOT_4x4_i8_NEON_INTRIN, dot_product_4x4_i8i8i32_desc, dot_product_4x4_i8i8i32_neon
)

TensorIntrin.register(
ARM_DOT_4x4_i8_SDOT_INTRIN, dot_product_4x4_i8i8i32_desc, dot_product_4x4_i8i8i32_sdot
)
75 changes: 75 additions & 0 deletions python/tvm/tir/tensor_intrin/x86.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,missing-function-docstring
"""Intrinsics for x86 tensorization."""
from tvm.script import tir as T
from .. import TensorIntrin


# Tensorized intrinsic description and VNNI-specific implementation.
# Equivalent to the ones in topi/x86/tensor_intrin.py


@T.prim_func
def dot_product_16x4_u8i8i32_desc(
A: T.Buffer((4,), "uint8", offset_factor=1),
B: T.Buffer((16, 4), "int8", offset_factor=1),
C: T.Buffer((16,), "int32", offset_factor=1),
) -> None:
with T.block("root"):
T.reads(C[0:16], A[0:4], B[0:16, 0:4])
T.writes(C[0:16])
for i in T.serial(0, 16):
with T.init():
C[i] = T.int32(0)
for k in T.serial(0, 4):
with T.block("update"):
vi, vk = T.axis.remap("SR", [i, k])
C[vi] = C[vi] + T.cast(A[vk], "int32") * T.cast(B[vi, vk], "int32")


@T.prim_func
def dot_product_16x4_u8i8i32_vnni(
A: T.Buffer((4,), "uint8", offset_factor=1),
B: T.Buffer((16, 4), "int8", offset_factor=1),
C: T.Buffer((16,), "int32", offset_factor=1),
) -> None:
with T.block("root"):
T.reads(C[0:16], A[0:4], B[0:16, 0:4])
T.writes(C[0:16])

A_u8x4 = A.vload([0], "uint8x4")
A_i32 = T.reinterpret(A_u8x4, dtype="int32")

B_i8x64 = B.vload([0, 0], dtype="int8x64")
B_i32x16 = T.reinterpret(B_i8x64, dtype="int32x16")

C[T.ramp(T.int32(0), 1, 16)] += T.call_llvm_pure_intrin( # Note: this is an update +=
T.llvm_lookup_intrinsic_id("llvm.x86.avx512.vpdpbusd.512"),
T.uint32(0),
T.int32x16(0),
T.broadcast(A_i32, 16),
B_i32x16,
dtype="int32x16",
)


VNNI_DOT_16x4_INTRIN = "dot_16x4_vnni"

TensorIntrin.register(
VNNI_DOT_16x4_INTRIN, dot_product_16x4_u8i8i32_desc, dot_product_16x4_u8i8i32_vnni
)
57 changes: 2 additions & 55 deletions tests/python/unittest/test_meta_schedule_tune_relay.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@
from tvm.target.target import Target
from tvm.tir.schedule import BlockRV, Schedule
from tvm.tir.schedule.trace import Trace
from tvm.tir.tensor_intrin.x86 import VNNI_DOT_16x4_INTRIN as VNNI_INTRIN


logging.basicConfig()
logging.getLogger("tvm.meta_schedule").setLevel(logging.DEBUG)
Expand Down Expand Up @@ -328,57 +330,6 @@ def get_output(data, lib):
assert np.allclose(actual_output, expected_output, rtol=1e-4, atol=2e-4)


# Tensorized intrinsic description and VNNI-specific implementation.
# Equivalent to the ones in topi/x86/tensor_intrin.py


@T.prim_func
def dot_product_desc(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (4,), "uint8", offset_factor=1)
B = T.match_buffer(b, (16, 4), "int8", offset_factor=1)
C = T.match_buffer(c, (16,), "int32", offset_factor=1)

with T.block("root"):
T.reads(C[0:16], A[0:4], B[0:16, 0:4])
T.writes(C[0:16])
for i in T.serial(0, 16):
with T.init():
C[i] = T.int32(0)
for k in T.serial(0, 4):
with T.block("update"):
vi, vk = T.axis.remap("SR", [i, k])
C[vi] = C[vi] + T.cast(A[vk], "int32") * T.cast(B[vi, vk], "int32")


@T.prim_func
def dot_product_vnni(a: T.handle, b: T.handle, c: T.handle) -> None:
A = T.match_buffer(a, (4,), "uint8", offset_factor=1)
B = T.match_buffer(b, (16, 4), "int8", offset_factor=1)
C = T.match_buffer(c, (16,), "int32", offset_factor=1)

with T.block("root"):
T.reads(C[0:16], A[0:4], B[0:16, 0:4])
T.writes(C[0:16])

A_u8x4 = A.vload([0], "uint8x4")
A_i32 = T.reinterpret(A_u8x4, dtype="int32")

B_i8x64 = B.vload([0, 0], dtype="int8x64")
B_i32x16 = T.reinterpret(B_i8x64, dtype="int32x16")

C[T.ramp(T.int32(0), 1, 16)] += T.call_llvm_pure_intrin( # Note: this is an update +=
T.llvm_lookup_intrinsic_id("llvm.x86.avx512.vpdpbusd.512"),
T.uint32(0),
T.int32x16(0),
T.broadcast(A_i32, 16),
B_i32x16,
dtype="int32x16",
)


VNNI_INTRIN = "dot_16x1x16_uint8_int8_int32_cascadelake"


def schedule_dense(dense_block, M, do_tune, sch):
"""
Manually schedule a dense block, created from TE compute op via CreatePrimFunc,
Expand Down Expand Up @@ -546,10 +497,6 @@ def schedule_fn(task, sch):

@pytest.mark.skip("Requires cascadelake")
def test_tune_relay_manual_tir_vnni():
# Register a pair of an intrinsic description for 16x4 dot product, and its
# VNNI-specific implementation.
tir.TensorIntrin.register(VNNI_INTRIN, dot_product_desc, dot_product_vnni)

manual_tir_common(do_tune=False)

"""
Expand Down
Loading

0 comments on commit fc04738

Please sign in to comment.