Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule] No explicit unrolling for spatial PrimFunc #11534

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion src/meta_schedule/schedule_rule/parallel_vectorize_unroll.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,11 @@ bool IsRootBlock(const Schedule& sch, const BlockRV& block_rv) {
return block_sref->parent == nullptr;
}

bool CheckSpatialPrimFunc(const Schedule& sch, const BlockRV& root_block_rv) {
return IsSpatialPrimFunc(
GetRef<PrimFunc>(GetRootPrimFunc(sch->mod(), sch->Get(root_block_rv).get(), nullptr)));
}

} // namespace tir
} // namespace tvm

Expand Down Expand Up @@ -60,7 +65,7 @@ class ParallelizeVectorizeUnrollNode : public ScheduleRuleNode {
sch->Annotate(root_rv, tir::attr::meta_schedule_vectorize, Integer(max_vectorize_extent));
}
// Unroll
if (!unroll_max_steps.empty()) {
if (!unroll_max_steps.empty() && !tir::CheckSpatialPrimFunc(sch, root_rv)) {
int n = unroll_max_steps.size();
double prob = 1.0 / n;
Array<FloatImm> probs(n, FloatImm(DataType::Float(64), prob));
Expand Down
7 changes: 7 additions & 0 deletions src/tir/schedule/analysis.h
Original file line number Diff line number Diff line change
Expand Up @@ -625,6 +625,13 @@ bool IsTrivialBinding(const ScheduleState& self, const StmtSRef& block_sref);
*/
bool NeedsMultiLevelTiling(const ScheduleState& self, const StmtSRef& block_sref);

/*!
* \brief Checks if all the blocks in the PrimFunc is spatial
* \param func The PrimFunc to be checked
* \return A boolean indicating whether all the blocks in the PrimFunc is spatial
*/
bool IsSpatialPrimFunc(const PrimFunc& func);

/*!
* \brief Checks if the rfactor or cross thread reduction is beneficial to the given block.
* \param self The schedule state.
Expand Down
19 changes: 19 additions & 0 deletions src/tir/schedule/analysis/analysis.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1957,6 +1957,25 @@ bool NeedsMultiLevelTiling(const ScheduleState& self, const StmtSRef& block_sref
return total_unused_block_vars >= 1;
}

bool IsSpatialPrimFunc(const PrimFunc& func) {
bool result = true;
PreOrderVisit(func->body, [&result](const ObjectRef& obj) {
if (result == false) {
return false;
}
if (const auto* block = obj.as<BlockNode>()) {
for (const IterVar& iter_var : block->iter_vars) {
if (iter_var->iter_type != IterVarType::kDataPar) {
result = false;
return false;
}
}
}
return true;
});
return result;
}

std::pair<int64_t, int64_t> GetCumulativeSpaceAndReductionLength(const tir::ScheduleState& self,
const tir::StmtSRef& block_sref) {
Array<tir::StmtSRef> loops = tir::GetLoops(block_sref);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
# under the License.
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring
import tvm
from tvm import meta_schedule as ms
from tvm.meta_schedule.space_generator.post_order_apply import PostOrderApply
from tvm.meta_schedule.testing.schedule_rule import parallel_vectorize_unroll
from tvm.meta_schedule.testing.space_generation import check_trace
Expand Down Expand Up @@ -61,6 +62,164 @@ def main(a: T.handle, b: T.handle, c: T.handle) -> None:
C[vi, vj] = 0.0
C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]


# from tvm.script import tir as T
@tvm.script.ir_module
class PureSpatial:
@T.prim_func
def main(placeholder: T.Buffer[(1, 13, 13, 3, 85), "float32"], placeholder_1: T.Buffer[(1, 26, 26, 3, 85), "float32"], placeholder_2: T.Buffer[(1, 52, 52, 3, 85), "float32"], T_expand_dims: T.Buffer[(1, 80, 10647), "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
# with T.block("root")
T_strided_slice_with_axes = T.alloc_buffer([1, 52, 52, 3, 1], dtype="float32")
T_sigmoid = T.alloc_buffer([1, 52, 52, 3, 1], dtype="float32")
T_strided_slice_with_axes_1 = T.alloc_buffer([1, 52, 52, 3, 80], dtype="float32")
T_sigmoid_1 = T.alloc_buffer([1, 52, 52, 3, 80], dtype="float32")
T_multiply = T.alloc_buffer([1, 52, 52, 3, 80], dtype="float32")
T_reshape = T.alloc_buffer([8112, 80], dtype="float32")
T_strided_slice_with_axes_2 = T.alloc_buffer([1, 26, 26, 3, 1], dtype="float32")
T_sigmoid_2 = T.alloc_buffer([1, 26, 26, 3, 1], dtype="float32")
T_strided_slice_with_axes_3 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32")
T_sigmoid_3 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32")
T_multiply_1 = T.alloc_buffer([1, 26, 26, 3, 80], dtype="float32")
T_reshape_1 = T.alloc_buffer([2028, 80], dtype="float32")
T_strided_slice_with_axes_4 = T.alloc_buffer([1, 13, 13, 3, 1], dtype="float32")
T_sigmoid_4 = T.alloc_buffer([1, 13, 13, 3, 1], dtype="float32")
T_strided_slice_with_axes_5 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32")
T_sigmoid_5 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32")
T_multiply_2 = T.alloc_buffer([1, 13, 13, 3, 80], dtype="float32")
T_reshape_2 = T.alloc_buffer([507, 80], dtype="float32")
T_concat = T.alloc_buffer([10647, 80], dtype="float32")
T_transpose = T.alloc_buffer([80, 10647], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 1):
with T.block("T_strided_slice_with_axes"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)])
T.writes(T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4] = placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]
for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 1):
with T.block("T_sigmoid"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid[ax0, ax1, ax2, ax3, ax4])
T_sigmoid[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80):
with T.block("T_strided_slice_with_axes_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)])
T.writes(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4] = placeholder_2[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]
for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80):
with T.block("T_sigmoid_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid_1[ax0, ax1, ax2, ax3, ax4])
T_sigmoid_1[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_1[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 52, 52, 3, 80):
with T.block("T_multiply"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_sigmoid[ax0, ax1, ax2, ax3, 0], T_sigmoid_1[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply[ax0, ax1, ax2, ax3, ax4])
T_multiply[ax0, ax1, ax2, ax3, ax4] = T_sigmoid[ax0, ax1, ax2, ax3, 0] * T_sigmoid_1[ax0, ax1, ax2, ax3, ax4]
for i0, i1 in T.grid(8112, 80):
with T.block("T_reshape"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_multiply[0, (ax1 // 80 + ax0) % 8112 // 156, (ax1 // 80 + ax0) % 156 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80])
T.writes(T_reshape[ax0, ax1])
T_reshape[ax0, ax1] = T_multiply[0, (ax1 // 80 + ax0) % 8112 // 156, (ax1 // 80 + ax0) % 156 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80]
for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 1):
with T.block("T_strided_slice_with_axes_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)])
T.writes(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4] = placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]
for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 1):
with T.block("T_sigmoid_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid_2[ax0, ax1, ax2, ax3, ax4])
T_sigmoid_2[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_2[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80):
with T.block("T_strided_slice_with_axes_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)])
T.writes(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4] = placeholder_1[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]
for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80):
with T.block("T_sigmoid_3"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid_3[ax0, ax1, ax2, ax3, ax4])
T_sigmoid_3[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_3[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 26, 26, 3, 80):
with T.block("T_multiply_1"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_sigmoid_2[ax0, ax1, ax2, ax3, 0], T_sigmoid_3[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply_1[ax0, ax1, ax2, ax3, ax4])
T_multiply_1[ax0, ax1, ax2, ax3, ax4] = T_sigmoid_2[ax0, ax1, ax2, ax3, 0] * T_sigmoid_3[ax0, ax1, ax2, ax3, ax4]
for i0, i1 in T.grid(2028, 80):
with T.block("T_reshape_1"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_multiply_1[0, (ax1 // 80 + ax0) % 2028 // 78, (ax1 // 80 + ax0) % 78 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80])
T.writes(T_reshape_1[ax0, ax1])
T_reshape_1[ax0, ax1] = T_multiply_1[0, (ax1 // 80 + ax0) % 2028 // 78, (ax1 // 80 + ax0) % 78 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80]
for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 1):
with T.block("T_strided_slice_with_axes_4"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)])
T.writes(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4] = placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(4)]
for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 1):
with T.block("T_sigmoid_4"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid_4[ax0, ax1, ax2, ax3, ax4])
T_sigmoid_4[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_4[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80):
with T.block("T_strided_slice_with_axes_5"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)])
T.writes(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4])
T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4] = placeholder[ax0, ax1, ax2, ax3, T.cast(ax4, "int64") + T.int64(5)]
for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80):
with T.block("T_sigmoid_5"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4])
T.writes(T_sigmoid_5[ax0, ax1, ax2, ax3, ax4])
T_sigmoid_5[ax0, ax1, ax2, ax3, ax4] = T.sigmoid(T_strided_slice_with_axes_5[ax0, ax1, ax2, ax3, ax4], dtype="float32")
for i0, i1, i2, i3, i4 in T.grid(1, 13, 13, 3, 80):
with T.block("T_multiply_2"):
ax0, ax1, ax2, ax3, ax4 = T.axis.remap("SSSSS", [i0, i1, i2, i3, i4])
T.reads(T_sigmoid_4[ax0, ax1, ax2, ax3, 0], T_sigmoid_5[ax0, ax1, ax2, ax3, ax4])
T.writes(T_multiply_2[ax0, ax1, ax2, ax3, ax4])
T_multiply_2[ax0, ax1, ax2, ax3, ax4] = T_sigmoid_4[ax0, ax1, ax2, ax3, 0] * T_sigmoid_5[ax0, ax1, ax2, ax3, ax4]
for i0, i1 in T.grid(507, 80):
with T.block("T_reshape_2"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_multiply_2[0, (ax1 // 80 + ax0) % 507 // 39, (ax1 // 80 + ax0) % 39 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80])
T.writes(T_reshape_2[ax0, ax1])
T_reshape_2[ax0, ax1] = T_multiply_2[0, (ax1 // 80 + ax0) % 507 // 39, (ax1 // 80 + ax0) % 39 // 3, (ax1 // 80 + ax0) % 3, ax1 % 80]
for i0, i1 in T.grid(10647, 80):
with T.block("T_concat"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_reshape[ax0 - 2535, ax1], T_reshape_1[ax0 - 507, ax1], T_reshape_2[ax0, ax1])
T.writes(T_concat[ax0, ax1])
T_concat[ax0, ax1] = T.if_then_else(2535 <= ax0, T_reshape[ax0 - 2535, ax1], T.if_then_else(507 <= ax0, T_reshape_1[ax0 - 507, ax1], T_reshape_2[ax0, ax1], dtype="float32"), dtype="float32")
for i0, i1 in T.grid(80, 10647):
with T.block("T_transpose"):
ax0, ax1 = T.axis.remap("SS", [i0, i1])
T.reads(T_concat[ax1, ax0])
T.writes(T_transpose[ax0, ax1])
T_transpose[ax0, ax1] = T_concat[ax1, ax0]
for i0, i1, i2 in T.grid(1, 80, 10647):
with T.block("T_expand_dims"):
ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2])
T.reads(T_transpose[ax1, ax2])
T.writes(T_expand_dims[ax0, ax1, ax2])
T_expand_dims[ax0, ax1, ax2] = T_transpose[ax1, ax2]


# pylint: enable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks
# fmt: on

Expand Down Expand Up @@ -101,5 +260,25 @@ def test_parallel_vectorize_unroll():
check_trace(spaces, expected)


def test_parallel_vectorize_unroll_spatial():
mod = PureSpatial
target = Target("llvm --num-cores=32")
ctx = _create_context(
mod=mod,
target=target,
rule=ms.schedule_rule.ParallelizeVectorizeUnroll(
max_jobs_per_core=-1,
max_vectorize_extent=-1,
unroll_max_steps=[1, 2, 4, 8, 16, 32, 64],
unroll_explicit=True,
),
)
spaces = ctx.space_generator.generate_design_space(mod=mod)
assert len(spaces) == 1
trace = spaces[0].trace.simplified(remove_postproc=True)
assert not trace.insts


if __name__ == "__main__":
test_parallel_vectorize_unroll()
test_parallel_vectorize_unroll_spatial()