Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix][Transform] Preserve symbolic variables in FuseOps #16637

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions src/relax/transform/fuse_ops.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1203,10 +1203,11 @@ class CompositeFunctionAnnotator : public ExprMutator {
func->GetAttr<String>(attr::kCodegen).defined()) {
continue;
}
auto new_body = VisitExpr(func->body);

auto new_body = VisitWithNewScope(func->body, func->params);
if (!new_body.same_as(func->body)) {
auto new_func = Function(func->params, VisitExpr(func->body), func->ret_struct_info,
func->is_pure, func->attrs, func->span);
auto new_func = Function(func->params, new_body, func->ret_struct_info, func->is_pure,
func->attrs, func->span);
builder_->UpdateFunction(entry.first, new_func);
}
}
Expand Down
87 changes: 87 additions & 0 deletions tests/python/relax/test_transform_fuse_ops_by_pattern.py
Original file line number Diff line number Diff line change
Expand Up @@ -1130,5 +1130,92 @@ def test_error_on_repeated_variable_definitions():
relax.transform.FuseOpsByPattern(patterns)(mod)


def test_matmul_symbolic_var():
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor(["batch_size", 1024], "float16"),
w1: R.Tensor([1024, 1024], "float16"),
w2: R.Tensor([1024, "M"], "float16"),
):
with R.dataflow():
matmul1 = R.matmul(x, w1)
matmul2 = R.matmul(x, w2)
out = (matmul1, matmul2)
R.output(out)
return out

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor(["batch_size", 1024], "float16"),
w1: R.Tensor([1024, 1024], "float16"),
w2: R.Tensor([1024, "M"], "float16"),
) -> R.Tuple(
R.Tensor(["batch_size", 1024], "float16"),
R.Tensor(["batch_size", "M"], "float16"),
):
cls = Expected
with R.dataflow():
matmul1 = cls.fused_relax_matmul_cublas(x, w1)
matmul2 = cls.fused_relax_matmul1_cublas(x, w2)
out = (matmul1, matmul2)
R.output(out)
return out

@R.function
def fused_relax_matmul_cublas(
x: R.Tensor(["batch_size", 1024], "float16"),
w1: R.Tensor([1024, 1024], "float16"),
) -> R.Tensor(["batch_size", 1024], "float16"):
batch_size = T.int64()
R.func_attr({"Codegen": "cublas"})

@R.function
def inner_func(
x: R.Tensor([batch_size, 1024], "float16"),
w1: R.Tensor([1024, 1024], "float16"),
) -> R.Tensor([batch_size, 1024], "float16"):
R.func_attr({"Composite": "cublas.matmul"})
with R.dataflow():
out = R.matmul(x, w1)
R.output(out)
return out

out = inner_func(x, w1)
return out

@R.function
def fused_relax_matmul1_cublas(
x: R.Tensor(["batch_size", 1024], "float16"),
w2: R.Tensor([1024, "M"], "float16"),
) -> R.Tensor(["batch_size", "M"], "float16"):
batch_size = T.int64()
M = T.int64()
R.func_attr({"Codegen": "cublas"})

@R.function
def inner_func(
x: R.Tensor([batch_size, 1024], "float16"),
w2: R.Tensor((1024, M), "float16"),
) -> R.Tensor([batch_size, M], "float16"):
R.func_attr({"Composite": "cublas.matmul"})
with R.dataflow():
out = R.matmul(x, w2)
R.output(out)
return out

out = inner_func(x, w2)
return out

patterns = relax.backend.pattern_registry.get_patterns_with_prefix("cublas.matmul")
After = relax.transform.FuseOpsByPattern(patterns, bind_constants=False, annotate_codegen=True)(
Before
)
tvm.ir.assert_structural_equal(Expected, After)


if __name__ == "__main__":
pytest.main([__file__])
Loading