Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SME][Test] Add additional conv2d tests for asymmetric parameters #17055

Merged
merged 1 commit into from
Jun 8, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 27 additions & 43 deletions tests/python/relay/strategy/arm_cpu/test_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,48 +120,10 @@ class TestConv2d_NCHW_Spatial_Pack(Conv2dTests):
schedule_name = parameter("conv2d_nchw_spatial_pack.arm_cpu")


in_dtype = tvm.testing.parameter("float16", "float32")
out_dtype = tvm.testing.parameter("float32")

batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation = tvm.testing.parameters(
# Pad M, N, K
(1, 1, 1, 1, 1, 1, "SAME", 1),
(1, 1, 3, 15, 1, 1, "SAME", 1),
# Pad M, K
(1, 3, 9, 16, 3, 1, "SAME", 1),
# Pad M, N
(1, 2, 9, 15, 4, 1, "SAME", 1),
# Pad K, N
(1, 7, 4, 15, 3, 1, "SAME", 1),
# Pad M
(1, 2, 9, 16, 4, 1, "SAME", 1),
# Pad K
(1, 7, 4, 16, 3, 1, "SAME", 1),
# Pad N
(1, 2, 4, 15, 4, 1, "SAME", 1),
(1, 2, 4, 20, 1, 1, "SAME", 1),
# Large workloads
(1, 128, 32, 128, 3, 1, "SAME", 1),
(4, 64, 16, 64, 5, 2, "SAME", 1),
(1, 128, 32, 128, 3, 1, "VALID", 1),
(4, 64, 16, 64, 5, 2, "VALID", 1),
(1, 64, 16, 64, 3, 2, (0, 0, 1, 1), 1),
(1, 64, 16, 64, 3, 2, (1, 1, 2, 2), 1),
(1, 64, 16, 64, 5, 2, (3, 3, 2, 2), 1),
(1, 64, 16, 64, 3, 2, (0, 1, 2, 3), 1),
(1, 64, 32, 64, 3, 1, "SAME", 2),
(1, 64, 32, 64, 3, 1, (1, 1, 2, 2), 2),
)


@tvm.testing.fixture()
def ref_data(
in_dtype, out_dtype, batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation
):
def ref_data(in_dtype, out_dtype, data_shape, num_filter, kernel_size, stride, padding, dilation):
np.random.seed(0)
in_height = in_width = in_size
a_shape = (batch, in_height, in_width, in_channel)
w_shape = (kernel, kernel, in_channel, num_filter)
a_shape = data_shape
w_shape = (kernel_size[0], kernel_size[1], data_shape[3], num_filter)

a_np = np.random.uniform(size=a_shape).astype(in_dtype)
w_np = np.random.uniform(size=w_shape).astype(in_dtype)
Expand All @@ -175,9 +137,31 @@ def ref_data(
@pytest.mark.skipif(
llvm_version_major() < 16, reason="SME is not supported in earlier versions of LLVM"
)
@pytest.mark.parametrize(
"data_shape,kernel_size,num_filter,stride,padding,dilation",
[
((1, 1, 1, 1), (3, 3), 1, 1, "SAME", 1),
((1, 9, 9, 1), (3, 3), 16, 1, "SAME", 1),
((1, 32, 32, 1), (3, 3), 12, 1, "SAME", 1),
((1, 32, 10, 3), (3, 3), 16, 1, 0, 1),
((1, 49, 10, 1), (10, 4), 64, (2, 1), (4, 1, 5, 1), 1),
((1, 32, 32, 16), (3, 3), 16, 1, (0, 2, 2, 0), 1),
((1, 32, 32, 16), (3, 4), 16, 1, 0, 1),
((1, 9, 31, 7), (3, 3), 7, 1, "VALID", 1),
((1, 32, 32, 16), (5, 5), 16, 1, (0, 2, 2, 0), 2),
((1, 32, 32, 16), (3, 3), 16, 1, (1, 1, 2, 2), 2),
((1, 134, 153, 32), (3, 3), 2, (2, 2), "VALID", 1),
((1, 16, 16, 64), (1, 1), 8, (1, 1), "SAME", 1),
],
)
@pytest.mark.parametrize("in_dtype,out_dtype", [("float32", "float32"), ("float16", "float32")])
@tvm.testing.requires_aprofile_aem_fvp
def test_conv2d_sme(target, ref_data, in_dtype, out_dtype, stride, padding, dilation):
a_np, w_np, dw_np, b_np = ref_data
def test_conv2d_sme(
target, data_shape, kernel_size, num_filter, stride, padding, dilation, in_dtype, out_dtype
):
a_np, w_np, dw_np, b_np = ref_data(
in_dtype, out_dtype, data_shape, num_filter, kernel_size, stride, padding, dilation
)

kernel_size = get_const_tuple(w_np.shape[:2])
out_channels = w_np.shape[3]
Expand Down
Loading