Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TE][CreatePrimFunc] Fix create reduce block with spatial iter dependent init value #17301

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 11 additions & 6 deletions src/te/operation/create_primfunc.cc
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,10 @@ BlockRealize GenerateBlockFromTensors(const te::ComputeOp& compute_op,
}

// Step 4. Create block body.
// helper to transform the expr and remap iters to the block domain
auto f_transform_and_remap = [&](const PrimExpr& e) {
return Substitute(info->transformer(e), var_map);
};
String block_name{nullptr};
Optional<Stmt> init = NullOpt;
Stmt body;
Expand All @@ -246,8 +250,7 @@ BlockRealize GenerateBlockFromTensors(const te::ComputeOp& compute_op,
// - A RHS operand is the value to be reduced.
for (int i = 0; i < n_buffers; ++i) {
const PrimExpr& left = BufferLoad(buffers[i], indices);
const PrimExpr& right =
analyzer->Simplify(Substitute(info->transformer(reduce->source[i]), var_map));
const PrimExpr& right = analyzer->Simplify(f_transform_and_remap(reduce->source[i]));
lhs.push_back(left);
rhs.push_back(right);
ICHECK_EQ(left->dtype, right->dtype);
Expand All @@ -267,13 +270,15 @@ BlockRealize GenerateBlockFromTensors(const te::ComputeOp& compute_op,
// then store the value of the variables into the target buffer positions.
for (int i = 0; i < n_buffers; ++i) {
const Buffer& buffer = buffers[i];
init_stmts.push_back(BufferStore(buffer, reduce->combiner->identity_element[i], indices));
PrimExpr identity = f_transform_and_remap(reduce->combiner->identity_element[i]);
init_stmts.push_back(BufferStore(buffer, identity, indices));
PrimExpr value{nullptr};
if (n_buffers > 1) {
temp_vars.push_back(Var("v_" + buffer->name, PrimType(lhs[i].dtype())));
value = temp_vars.back();
} else {
value = reduce->combiner.get()->operator()(lhs, rhs)[i];
PrimExpr combined = reduce->combiner.get()->operator()(lhs, rhs)[i];
value = f_transform_and_remap(combined);
}
body_stmts.push_back(BufferStore(buffer, value, indices));
}
Expand All @@ -283,15 +288,15 @@ BlockRealize GenerateBlockFromTensors(const te::ComputeOp& compute_op,
if (n_buffers > 1) {
// When there are multiple buffers, we wrap the body with LetStmts.
for (int i = n_buffers - 1; i >= 0; --i) {
PrimExpr value = reduce->combiner.get()->operator()(lhs, rhs)[i];
PrimExpr value = f_transform_and_remap(reduce->combiner.get()->operator()(lhs, rhs)[i]);
body = LetStmt(temp_vars[i], std::move(value), std::move(body));
}
}
} else {
// Case 2. Data parallel compute
ICHECK_EQ(tensors.size(), 1);
block_name = info->FreshName(tensors[0]->GetNameHint());
const PrimExpr& compute_body = Substitute(info->transformer(expr_body), var_map);
const PrimExpr& compute_body = f_transform_and_remap(expr_body);
body = BufferStore(info->tensor2buffers[tensors[0]], analyzer->Simplify(compute_body), indices);
}

Expand Down
73 changes: 73 additions & 0 deletions tests/python/te/test_te_create_primfunc.py
Original file line number Diff line number Diff line change
Expand Up @@ -814,5 +814,78 @@ def test_with_var_input():
_check_workload(te_slice_with_var_input, tir_slice_with_var_input, index_dtype_override="int64")


def test_loop_aware_initial_value():
"""Test initial value aware of spatial iter position"""

@T.prim_func
def tir_workload(var_a: T.handle, var_b: T.handle, var_sum_red: T.handle):
T.func_attr({"tir.noalias": T.bool(True), "global_symbol": "main"})
a = T.match_buffer(var_a, (5, 5))
b = T.match_buffer(var_b, (5,))
sum_red = T.match_buffer(var_sum_red, (5,))
for i, ax in T.grid(5, 5):
with T.block("sum_red"):
v_i, v_ax = T.axis.remap("SR", [i, ax])
T.reads(b[v_i], a[v_i, v_ax])
T.writes(sum_red[v_i])
with T.init():
sum_red[v_i] = b[v_i]
sum_red[v_i] = sum_red[v_i] + a[v_i, v_ax]

def te_workload():
data = te.placeholder((5, 5), "float32", "a")
init = te.placeholder((5,), "float32", "b")
ax = te.reduce_axis((0, 5), "ax")
sum_red = te.compute(
(5,),
lambda i: te.comm_reducer(
lambda x, y: x + y,
lambda t: init[i],
)(data[i, ax], axis=[ax]),
name="sum_red",
)
return [data, init, sum_red]

_check_workload(te_workload, tir_workload)


def test_loop_aware_reducer_combiner():
"""Test combiner aware of spatial iter position"""

@T.prim_func
def tir_workload(var_a: T.handle, var_b: T.handle, var_sum_red: T.handle):
T.func_attr({"tir.noalias": T.bool(True), "global_symbol": "main"})
a = T.match_buffer(var_a, (5, 5))
b = T.match_buffer(var_b, (5,))
sum_red = T.match_buffer(var_sum_red, (5,))
for i, ax in T.grid(5, 5):
with T.block("sum_red"):
v_i = T.axis.spatial(5, i)
v_ax = T.axis.reduce(5, ax)
T.reads(a[v_i, 0:5])
T.writes(sum_red[v_i])
with T.init():
sum_red[v_i] = T.float32(0.0)
sum_red[v_i] = T.if_then_else(
a[v_i, sum_red[v_i]] < a[v_i, v_ax], sum_red[v_i], T.Cast("float32", v_ax)
)

def te_workload():
data = te.placeholder((5, 5), "float32", "a")
init = te.placeholder((5,), "float32", "b")
ax = te.reduce_axis((0, 5), "ax")
sum_red = te.compute(
(5,),
lambda i: te.comm_reducer(
lambda x, y: te.if_then_else(data[i, x] < y, x, ax),
lambda _: te.const(0, "float32"),
)(data[i, ax], axis=[ax]),
name="sum_red",
)
return [data, init, sum_red]

_check_workload(te_workload, tir_workload)


if __name__ == "__main__":
tvm.testing.main()
Loading