Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relax][PyTorch] Support binary, statistical and search ops for ExportedProgram importer #17424

Merged
merged 4 commits into from
Sep 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,39 @@ def convert(node: fx.Node) -> relax.Var:

return convert

########## Binary Ops ##########

def _binary_op(self, relax_op: Callable, intrinsic_op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node) -> relax.Var:
def promote_binary_op_args(lhs, rhs):
if isinstance(lhs, relax.Expr) and isinstance(rhs, relax.Expr):
return lhs, rhs
elif isinstance(lhs, relax.Expr):
assert isinstance(lhs.struct_info, relax.TensorStructInfo)
return lhs, relax.const(rhs, lhs.struct_info.dtype)
elif isinstance(rhs, relax.Expr):
assert isinstance(rhs.struct_info, relax.TensorStructInfo)
return relax.const(lhs, rhs.struct_info.dtype), rhs
else:
assert False

def call_binary_op(op, lhs, rhs):
lhs, rhs = promote_binary_op_args(lhs, rhs)
return self.block_builder.emit(op(lhs, rhs))

lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return call_binary_op(relax_op, lhs, rhs)
elif isinstance(lhs, relax.expr.Constant):
return call_binary_op(relax_op, lhs, relax.const(rhs, dtype=lhs.struct_info.dtype))
elif isinstance(rhs, relax.expr.Constant):
return call_binary_op(relax_op, relax.const(lhs, dtype=rhs.struct_info.dtype), rhs)
return intrinsic_op(lhs, rhs)

return convert

########## Neural Network ##########

def _adaptive_avg_pool2d(self, node: fx.Node) -> relax.Var:
Expand Down Expand Up @@ -283,6 +316,35 @@ def _max_pool2d(self, node: fx.Node) -> relax.Var:

return self._max_pool2d_impl(x, kernel_size, stride, padding, dilation, ceil_mode)

########## Statistical ##########

def _mean(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.mean(x, dim, keepdims=keepdim))

def _sum(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.sum(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.sum(args[0], args[1]))

########## Search ##########

def _argmax_argmin(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node):
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = node.args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(op(x, dim, keepdim))

return convert

########## Manipulation ##########

def _reshape(self, node: fx.Node) -> relax.Var:
Expand Down
25 changes: 25 additions & 0 deletions python/tvm/relax/frontend/torch/exported_program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
# pylint: disable=import-outside-toplevel
"""PyTorch ExportedProgram of Relax."""
from collections import ChainMap, OrderedDict
from functools import partial
from typing import Callable, Dict, List, Tuple

import torch
Expand Down Expand Up @@ -76,6 +77,8 @@ def _hardtanh(self, node: fx.Node) -> relax.Expr:
def create_convert_map(
self,
) -> Dict[str, Callable[[fx.Node], relax.Var]]:
import operator

return {
# unary
"acos.default": self._unary_op(relax.op.acos),
Expand Down Expand Up @@ -109,11 +112,33 @@ def create_convert_map(
"tanh.default": self._unary_op(relax.op.tanh),
"tril.default": self._tril_triu(relax.op.tril),
"triu.default": self._tril_triu(relax.op.triu),
# binary
"add.Tensor": self._binary_op(relax.op.add, operator.add),
"div.Tensor": self._binary_op(relax.op.divide, operator.truediv),
"eq.Scalar": self._binary_op(relax.op.equal, operator.eq),
"eq.Tensor": self._binary_op(relax.op.equal, operator.eq),
"floor_divide.default": self._binary_op(relax.op.floor_divide, operator.floordiv),
"lt.Scalar": self._binary_op(relax.op.less, operator.lt),
"lt.Tensor": self._binary_op(relax.op.less, operator.lt),
"matmul.default": self._binary_op(
partial(relax.op.linear_algebra.matmul, out_dtype="float32"), operator.matmul
),
"max.other": self._binary_op(relax.op.maximum, max),
"mul.Tensor": self._binary_op(relax.op.multiply, operator.mul),
"pow.Tensor_Scalar": self._binary_op(relax.op.power, operator.pow),
"pow.Tensor_Tensor": self._binary_op(relax.op.power, operator.pow),
"sub.Tensor": self._binary_op(relax.op.subtract, operator.sub),
# neural network
"adaptive_avg_pool2d.default": self._adaptive_avg_pool2d,
"conv2d.default": self._conv2d,
"linear.default": self._linear,
"max_pool2d.default": self._max_pool2d,
# statistical
"mean.dim": self._mean,
"sum.dim_IntList": self._sum,
# search
"argmax.default": self._argmax_argmin(relax.op.argmax),
"argmin.default": self._argmax_argmin(relax.op.argmin),
# tensor manipulation
"view.default": self._reshape,
}
Expand Down
62 changes: 0 additions & 62 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,39 +96,6 @@ def convert(node: fx.Node) -> relax.Var:

return convert

########## Binary Ops ##########

def _binary_op(self, relax_op: Callable, intrinsic_op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node) -> relax.Var:
def promote_binary_op_args(lhs, rhs):
if isinstance(lhs, relax.Expr) and isinstance(rhs, relax.Expr):
return lhs, rhs
elif isinstance(lhs, relax.Expr):
assert isinstance(lhs.struct_info, relax.TensorStructInfo)
return lhs, relax.const(rhs, lhs.struct_info.dtype)
elif isinstance(rhs, relax.Expr):
assert isinstance(rhs.struct_info, relax.TensorStructInfo)
return relax.const(lhs, rhs.struct_info.dtype), rhs
else:
assert False

def call_binary_op(op, lhs, rhs):
lhs, rhs = promote_binary_op_args(lhs, rhs)
return self.block_builder.emit(op(lhs, rhs))

lhs, rhs = self.retrieve_args(node)
if isinstance(lhs, relax.Var) or isinstance(rhs, relax.Var):
return call_binary_op(relax_op, lhs, rhs)
elif isinstance(lhs, relax.expr.Constant):
return call_binary_op(relax_op, lhs, relax.const(rhs, dtype=lhs.struct_info.dtype))
elif isinstance(rhs, relax.expr.Constant):
return call_binary_op(relax_op, relax.const(lhs, dtype=rhs.struct_info.dtype), rhs)
return intrinsic_op(lhs, rhs)

return convert

########## Neural Network ##########

def _adaptive_avg_pool2d_module(self, node: fx.Node) -> relax.Var:
Expand Down Expand Up @@ -794,35 +761,6 @@ def _unbind(self, node: fx.Node) -> relax.Var:
ret.append(self.block_builder.emit(relax.op.squeeze(split[i], axis=dim)))
return self.block_builder.emit(relax.Tuple(ret))

########## Statistical ##########

def _mean(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.mean(x, dim, keepdims=keepdim))

def _sum(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.sum(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.sum(args[0], args[1]))

########## Search ##########

def _argmax_argmin(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node):
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = node.args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(op(x, dim, keepdim))

return convert

########## Manipulation ##########

def _cat(self, node: fx.Node) -> relax.Var:
Expand Down
Loading
Loading