Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] Improve more operator mxnet frontend importer #2772

Merged
merged 4 commits into from
Mar 11, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 64 additions & 8 deletions python/tvm/relay/frontend/mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,6 +294,51 @@ def _mx_leaky_relu(inputs, attrs):
raise RuntimeError("act_type: {} is not supported".format(act_type))


def _mx_make_power(power):
def _impl(inputs, _): # Note: no attrs
assert len(inputs) == 1
scalar = _expr.const(power, dtype=None)
# Note: int maps to "int32", float maps to "float32"
return _op.power(inputs[0], scalar)
return _impl


def _mx_make_exponent(base):
# exp(b, x) = e^b * e^x
def _impl(inputs, _): # Note: no attrs
assert len(inputs) == 1
scalar = _op.exp(_expr.const(base, dtype="float32"))
return _op.multiply(inputs[0], scalar)
return _impl


def _mx_make_logarithm(base):
# log(b, x) = log(x) / log(b)
def _impl(inputs, _): # Note: no attrs
assert len(inputs) == 1
scalar = _op.log(_expr.const(base, dtype="float32"))
return _op.divide(inputs[0], scalar)
return _impl


def _mx_expm1():
# exp_minus_1 x = exp(x) - 1
def _impl(inputs, _): # Note: no attrs
assert len(inputs) == 1
one = _expr.const(1, dtype="float32")
return _op.log(_op.subtract(inputs[0], one))
return _impl


def _mx_log1p():
# 1_plus_log x = log(x + 1)
def _impl(inputs, _): # Note: no attrs
assert len(inputs) == 1
one = _expr.const(1, dtype="float32")
return _op.log(_op.add(inputs[0], one))
return _impl


def _mx_lrn(inputs, attrs):
new_attrs = {}
new_attrs["alpha"] = attrs.get_float("alpha", 0.0001)
Expand Down Expand Up @@ -387,7 +432,6 @@ def _mx_proposal(inputs, attrs):
"exp",
"sigmoid",
"tanh",
"exp",
"negative",
"reshape_like",
"zeros_like",
Expand Down Expand Up @@ -419,6 +463,20 @@ def _mx_proposal(inputs, attrs):
"_minimum" : _rename(_op.minimum),
"flatten" : _rename(_op.nn.batch_flatten),
"Flatten" : _rename(_op.nn.batch_flatten),
# scalar power
"square" : _mx_make_power(2),
"sqrt" : _mx_make_power(1/2),
"rsqrt" : _mx_make_power(-1/2),
"cbrt" : _mx_make_power(1/3),
"rcbrt" : _mx_make_power(-1/3),
"__pow_scalar__" : _binop_scalar(_op.power),
"_power_scalar" : _binop_scalar(_op.power),
"__rsub_scalar__" : _rbinop_scalar(_op.subtract),
"_rminus_scalar" : _rbinop_scalar(_op.subtract),
"__rdiv_scalar__" : _rbinop_scalar(_op.divide),
"_rdiv_scalar" : _rbinop_scalar(_op.divide),
"__rpow_scalar__" : _rbinop_scalar(_op.power),
# scalar op
"__add_scalar__" : _binop_scalar(_op.add),
"_plus_scalar" : _binop_scalar(_op.add),
"__sub_scalar__" : _binop_scalar(_op.subtract),
Expand All @@ -427,13 +485,10 @@ def _mx_proposal(inputs, attrs):
"_mul_scalar" : _binop_scalar(_op.multiply),
"__div_scalar__" : _binop_scalar(_op.divide),
"_div_scalar" : _binop_scalar(_op.divide),
"__pow_scalar__" : _binop_scalar(_op.power),
"_power_scalar" : _binop_scalar(_op.power),
"__rsub_scalar__" : _rbinop_scalar(_op.subtract),
"_rminus_scalar" : _rbinop_scalar(_op.subtract),
"__rdiv_scalar__" : _rbinop_scalar(_op.divide),
"_rdiv_scalar" : _rbinop_scalar(_op.divide),
"__rpow_scalar__" : _rbinop_scalar(_op.power),
"log2" : _mx_make_logarithm(2),
"log10" : _mx_make_logarithm(10),
"log1p" : _mx_log1p,
"expm1" : _mx_expm1,
"_equal_scalar" : _mx_compare(_op.equal, _binop_scalar),
"_not_equal_scalar" : _mx_compare(_op.not_equal, _binop_scalar),
"_greater_scalar" : _mx_compare(_op.greater, _binop_scalar),
Expand All @@ -443,6 +498,7 @@ def _mx_proposal(inputs, attrs):
"_maximum_scalar" : _binop_scalar(_op.maximum),
"_minimum_scalar" : _binop_scalar(_op.minimum),
# reduction ops
"mean" : _reduce(_op.mean),
"max" : _reduce(_op.max),
"min" : _reduce(_op.min),
"sum" : _reduce(_op.sum),
Expand Down