Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PASS] Change IRVisitor interfaces to function override #42

Merged
merged 2 commits into from
Feb 12, 2017
Merged

[PASS] Change IRVisitor interfaces to function override #42

merged 2 commits into from
Feb 12, 2017

Conversation

ZihengJiang
Copy link
Contributor

No description provided.

@tqchen tqchen self-requested a review February 12, 2017 05:33
@tqchen tqchen merged commit 5c07413 into apache:master Feb 12, 2017
@ZihengJiang ZihengJiang deleted the ir_visitor branch April 19, 2017 20:44
tqchen pushed a commit to tqchen/tvm that referenced this pull request May 26, 2018
tqchen added a commit to tqchen/tvm that referenced this pull request May 26, 2018
tqchen pushed a commit that referenced this pull request May 29, 2018
tqchen added a commit that referenced this pull request May 29, 2018
tqchen pushed a commit to tqchen/tvm that referenced this pull request Jul 6, 2018
tqchen added a commit to tqchen/tvm that referenced this pull request Jul 6, 2018
tqchen pushed a commit to tqchen/tvm that referenced this pull request Jul 12, 2018
tqchen pushed a commit to tqchen/tvm that referenced this pull request Aug 4, 2018
sergei-mironov pushed a commit to sergei-mironov/tvm that referenced this pull request Aug 8, 2018
sergei-mironov pushed a commit to sergei-mironov/tvm that referenced this pull request Aug 8, 2018
sergei-mironov pushed a commit to sergei-mironov/tvm that referenced this pull request Aug 8, 2018
jroesch added a commit to jroesch/tvm that referenced this pull request Aug 29, 2018
* Start on REPL

* Clean up evaluator after rebase

* Add support for registering primitives

Refactor Environment interface to better disambiguate between Globals and
Intrinsics. Start on Python code to produce operator specific JIT compilers
which will specialize an operator based on the type signature of the operator

* Debugging test crashes

* Fix testing error and setup primitive test case

* Add a bunch of type annotations

* Add more .pyi files to stub C++ written functions

* Getting closer to primitive evaluation, need type information

* Continue refactoring needed to call Tensor program w/ Primitives

* Add Tensor values, and improve calling into eval

* Add notes for tomorrow

* Fix linting, prepare for early merge

* Fix rebase

* Fix linting

* Add typed_ast to package list

* Fix failing test cases

* Trigger rebuild
tqchen pushed a commit to tqchen/tvm that referenced this pull request Mar 29, 2020
jcf94 added a commit to jcf94/tvm that referenced this pull request Jun 24, 2020
* Bug Fix

* Sample example of Custom TensorCore Matmul
tqchen pushed a commit that referenced this pull request Jul 15, 2020
…generating (#5962)

* Code migration Start (#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (#13)

* Add basic tutorial

* migrate feature extraction (#14)

* Add XGBModel & RPCRunnerWarpper (#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (#16)

* add workload registry

* update

* update

* add task scheduler (#17)

* Add conv2d cuda tutorial with workload registry (#18)

* add tune_test.py (the old tune_wkl.py) (#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (#25)

* Add Index simplification & API update (#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (#31)

* Add tensorize step

* State python api update (#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (#32)

* Improve relay integration (#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
CloudManX pushed a commit to CloudManX/incubator-tvm that referenced this pull request Sep 15, 2020
…generating (apache#5962)

* Code migration Start (apache#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (apache#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (apache#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (apache#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (apache#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (apache#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(apache#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (apache#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (apache#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (apache#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (apache#13)

* Add basic tutorial

* migrate feature extraction (apache#14)

* Add XGBModel & RPCRunnerWarpper (apache#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (apache#16)

* add workload registry

* update

* update

* add task scheduler (apache#17)

* Add conv2d cuda tutorial with workload registry (apache#18)

* add tune_test.py (the old tune_wkl.py) (apache#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (apache#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (apache#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (apache#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (apache#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (apache#25)

* Add Index simplification & API update (apache#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (apache#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (apache#31)

* Add tensorize step

* State python api update (apache#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (apache#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (apache#32)

* Improve relay integration (apache#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (apache#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (apache#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (apache#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (apache#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (apache#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (apache#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (apache#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
wjj19950828 pushed a commit to wjj19950828/tvm that referenced this pull request Sep 18, 2021
add masked_select meshgrid scatter scatter_nd_add op
MasterJH5574 pushed a commit to MasterJH5574/tvm that referenced this pull request Mar 7, 2022
[SparseTIR] Constructors and Python Interface for `Axis` and `SparseBuffer` (apache#2)

* add methods for Object

* axis constructors

* methods for SparseBuffer

* put into registry

* python interface

[CherryPick][Intrinsic] lower_bound and upper_bound for binary search in Sparse TIR. (apache#483) (apache#4)

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* codegen-rule

* upd

* upd

* test

* upd

* fix

* two arguments

Co-authored-by: Zihao Ye <[email protected]>

Fix AxisTree (apache#3)

* fix axis tree

* upd

[SparseTIR] Add SparseBufferLoad/SparseBufferStore (apache#5)

* Add dtype for SparseBuffer

* Add name for SparseBuffer. Remove `ndim`

* Remove namespace sparse

* Add SparseBufferLoad/Store

* Add method `ndim()`

[SparseTIR] Introduce SpIterVar (apache#6)

* [SparseTIR] Introduce SpIterVar

* Add conversion to PrimExpr

[BugFix] Fix binary search & SpIterVar (apache#7)

[BugFix] Add field `is_reduction` for SpIterVar (apache#9)

* [BugFix] Add field `is_reduction` for SpIterVar

* Formatting

[SparseTIR] Index Lowering (apache#8)

* Add StmtFunctor/ExprFunctor for SparseBufferStore/Load

* Add basic index lowering

* Finish index lowering (maybe)

* Address comments

* Convert CRLF to LF

Frontend update, demo scripts. (apache#10)

* Format and Buffer data structure (apache#1)

* [SparseTIR] Constructors and Python Interface for `Axis` and `SparseBuffer` (apache#2)

* add methods for Object

* axis constructors

* methods for SparseBuffer

* put into registry

* python interface

* [CherryPick][Intrinsic] lower_bound and upper_bound for binary search in Sparse TIR. (apache#483) (apache#4)

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* codegen-rule

* upd

* upd

* test

* upd

* fix

* two arguments

Co-authored-by: Zihao Ye <[email protected]>

* Fix AxisTree (apache#3)

* fix axis tree

* upd

* Format and Buffer data structure (apache#1)

* [SparseTIR] Constructors and Python Interface for `Axis` and `SparseBuffer` (apache#2)

* add methods for Object

* axis constructors

* methods for SparseBuffer

* put into registry

* python interface

* fix axis tree

* upd

* Format and Buffer data structure (apache#1)

* [SparseTIR] Constructors and Python Interface for `Axis` and `SparseBuffer` (apache#2)

* add methods for Object

* axis constructors

* methods for SparseBuffer

* put into registry

* python interface

* [CherryPick][Intrinsic] lower_bound and upper_bound for binary search in Sparse TIR. (apache#483) (apache#4)

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* codegen-rule

* upd

* upd

* test

* upd

* fix

* two arguments

Co-authored-by: Zihao Ye <[email protected]>

* Fix AxisTree (apache#3)

* fix axis tree

* upd

* [SparseTIR] Add SparseBufferLoad/SparseBufferStore (apache#5)

* Add dtype for SparseBuffer

* Add name for SparseBuffer. Remove `ndim`

* Remove namespace sparse

* Add SparseBufferLoad/Store

* Add method `ndim()`

* Format and Buffer data structure (apache#1)

* [SparseTIR] Constructors and Python Interface for `Axis` and `SparseBuffer` (apache#2)

* add methods for Object

* axis constructors

* methods for SparseBuffer

* put into registry

* python interface

* [CherryPick][Intrinsic] lower_bound and upper_bound for binary search in Sparse TIR. (apache#483) (apache#4)

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* fix

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* codegen-rule

* upd

* upd

* test

* upd

* fix

* two arguments

Co-authored-by: Zihao Ye <[email protected]>

* Fix AxisTree (apache#3)

* fix axis tree

* upd

* [SparseTIR] Add SparseBufferLoad/SparseBufferStore (apache#5)

* Add dtype for SparseBuffer

* Add name for SparseBuffer. Remove `ndim`

* Remove namespace sparse

* Add SparseBufferLoad/Store

* Add method `ndim()`

* [SparseTIR] Introduce SpIterVar (apache#6)

* [SparseTIR] Introduce SpIterVar

* Add conversion to PrimExpr

* [BugFix] Fix binary search & SpIterVar (apache#7)

* [BugFix] Add field `is_reduction` for SpIterVar (apache#9)

* [BugFix] Add field `is_reduction` for SpIterVar

* Formatting

* upd

* upd

Co-authored-by: Ruihang Lai <[email protected]>

[SparseTIR] SparseBlock on C++/Python side (apache#11)

* Fix a bug in the last commit

* SparseBlock on C++ & Python side

[BugFix][SparseTIR] TVMScript Parser for Axis & SpIterVar (apache#12)

* Update `cord` and `pos`

* Fix `idtype`

* Formatting..

* Bug fix 1

* Move new special stmts

* Parser for Axis and SpIterVar

* Fix context_maintainer.py

[SparseTIR] Enhance SparseBlock to contain enough PrimFunc information (apache#13)

* Enhance SparseBlock to have enough PrimFunc info

* Remove `func_sparse_buffer_map_`

* Don't print the map uh-huh

[SparseTIR] Parser, Printer, Roundtrip (apache#14)

* SparseBlock scope handler (part 1)

* SparseBlock scope handler (part 2)

* SparseBlock scope handler (part 3)

* SparseBlock scope handler (fix 1)

* Add SparseBufferLoad/Store on Python side

* Parser for SparseBufferLoad/Store

* Add SparseBlock to Python __init__

* StmtFunctor for SparseBlock

* Ensure at least one dimension for SparseBuffer

* Make `axis` field of SpIterVar mandatory

* SparseBlock scope handler (fix 2)

* Update Axis syntax by removing `name` parameter

* Move to intrin.py

* Add filed `from_sparse` to DenseFixedAxis

* SparseTIR script printer

* Roundtrip test

* `update_symbol` bug fix

* Fix attr visit in SparseBuffer

* Define then compare in SparseBlock

* Fix printer bug for SparseBuffer

* Enable graph match for Axis and SparseBuffer

* Complete HashReduce and EqualReduce for AxisTree and SparseBuffer

* Fix typo

* Rename test

* Bug fix 1

* Bug fix 2

* Add more tests

Move tests (apache#15)

[SparseTIR] ReprPrinter for Axis and SpIterVar (apache#16)

upd (apache#17)

flatten (apache#18)

ELL and BSR correctness test scripts (apache#19)

[SparseTIR] SparseTIR Lowering (apache#20)

* Fix a previous bug of sparse-fixed SpIterVar creation

* Fix a previous bug in `GetDenseValue`

* Refactor Collector and IndexTransformer

* Construct block and loops

* Fix a previous bug which rejects DV iters in collector

* Update buffer map

* Create root block

* Fix bug of sparse-fixed SpIterVar creation

* Fix bug on SpIterVar conversion (with refactor)

* Fix bug when getting dependent SpIterVars

* Fix bug on dependency map and index lowering

* Full block read/write region

* Test version 1

* Fix bug of loop order

* Fix bug of batch-mm iterator ordering

* Update PrimFunc args to use symbolic params

* Fix bug of test "csr_element_wise"

* Fix bug of index accumulation for sparse-fixed axis

* Update correctness test

* Test structural equality

* Refactor and use Array

fix nnz cols

Add docstring for sparse tir lowering (apache#21)

* add docstring

* upd

Add more examples part 1 (sddmm) (apache#22)

* upd

* upd

* upd

[SparseTIR][Schedule] SparseBlockRV, GetSparseBlock, SparseReorder (apache#23)

* Test initialization

* Fix a stupid bug of ReprPrinter

* Add SparseBlockRV

* Schedule: GetSparseBlock

* Schedule: Reorder

[SparseTIR][Schedule] GetSpIters (apache#24)

remove hybrid script for successful compilation

Add atomic intrinsic for output nonzero inference. (apache#25)

* upd

* upd

Add "sparse" block attribute. (apache#26)

Revert "remove hybrid script for successful compilation"

This reverts commit eebd7c1.

[SparseTIR] Hack `IsAffineBinding` check (apache#27)

* [TensorIR][Schedule] Inherit block anotation upon creating new blocks

* Fix SDDMM test

* Hack IsAffineBinding for sparse blocks

Axis Dependency Tree aware code-gen and bmm example (apache#28)

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* upd

* remove redundancy

* fix

* upd

* upd

Re-design Indices lowering (apache#29)

* upd

* upd

* upd

* upd

* upd

* init

* format

* fix

* revise coding-style

* format

Complete indices lowering (apache#30)

* upd

* upd

* upd

* done

* upd

* passed test

* upd

Add more docstrings and depress warnings for new lowering algorithm. (apache#31)

Refactor derived axis, frontend support of fusion. (apache#32)

* upd

* upd

* fix

Fatal bugfix and change the signature of DenseVariableAxis.  (apache#33)

Syntax simplification (apache#34)

Change the order of generated blocks for block isolation. (apache#35)

* upd

* upd

* upd

Syntax of AttachAxis for BMM (apache#36)

* upd

* upd

* upd

[SparseTIR] Add "square sum" lowering test (apache#37)

* Add square sum test

* Remove pylint comment

[BugFix] Fix offset caching in lowering (apache#38)

* Hack compact dataflow check in a dirty way

* Add two-K square sum test

* Mark skipped tests

* Fix offset saving in lowering

Fusion syntax fix + SDDMM example.  (apache#39)

Some structure change on update offsets. (apache#40)

[Refactor] SparseTIR Lowering (apache#41)

* Take out methods in Scope

* Refactor

* Refactor "match"

* Tweak scope contents

* Refactor ViewIndexInAxis

* Refactor Scope

* SDDMM tests under implementation

* Refactor block stack

* Use Map for var_map

* Extract NeedCreateNewBlock

* Simplify SpIterVarToIterVar via GetIterExtent

* Refactor NeedCreateNewBlock

* Add docstring

* Use "auto" correctly

* Minor refactor and use some move

Remove redundant analyzers (apache#42)

Support indices lowering for attach and fuse. (apache#43)

* upd

* upd

* upd

Fix irregular BMM example. (apache#44)

* upd

* upd

* upd

* upd

RGCN forward and butterfly pattern example. (apache#45)

Fused SDDMM example. (apache#46)

* upd

* wip

* fix

Fix sparse reorder after refactor (apache#47)

[Refactor] Refactor Unittest (apache#48)

* upd

* remove redundancy

[Unittest] Correctness test for benchmarking scripts (apache#49)

Bugfix and more test for axis fusion, new workload (apache#50)

* upd

* upd

upd
cyx-6 added a commit to cyx-6/tvm that referenced this pull request Jun 11, 2022
cyx-6 added a commit to cyx-6/tvm that referenced this pull request Jun 25, 2022
junrushao pushed a commit to cyx-6/tvm that referenced this pull request Jul 4, 2022
cyx-6 added a commit to cyx-6/tvm that referenced this pull request Jul 13, 2022
Hzfengsy pushed a commit to Hzfengsy/tvm that referenced this pull request Jul 30, 2022
LeiWang1999 added a commit to LeiWang1999/tvm that referenced this pull request Nov 8, 2024
* Refactor quantization module to support new float8 formats

* Refactor quantization module to support new float8 formats

* update readme

---------

Co-authored-by: LeiWang199 <leiwang199>
MasterJH5574 pushed a commit to MasterJH5574/tvm that referenced this pull request Dec 4, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants