Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RELAY][OP] roi_align operator alter layout #6443

Merged
merged 7 commits into from
Sep 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/tvm/relay/op/strategy/cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -723,6 +723,8 @@ def nms_strategy_cuda(attrs, inputs, out_type, target):
def roi_align_strategy_cuda(attrs, inputs, out_type, target):
"""roi_align cuda strategy"""
strategy = _op.OpStrategy()
layout = attrs.layout
assert layout == "NCHW", "only support nchw for now"
strategy.add_implementation(
wrap_compute_roi_align(topi.vision.rcnn.roi_align_nchw),
wrap_topi_schedule(topi.cuda.schedule_roi_align),
Expand Down
2 changes: 2 additions & 0 deletions python/tvm/relay/op/strategy/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -948,6 +948,8 @@ def _compute_roi_align(attrs, inputs, out_type):
def roi_align_strategy(attrs, inputs, out_type, target):
"""roi_align generic strategy"""
strategy = _op.OpStrategy()
layout = attrs.layout
assert layout == "NCHW", "only support nchw for now"
strategy.add_implementation(
wrap_compute_roi_align(topi.vision.rcnn.roi_align_nchw),
wrap_topi_schedule(topi.generic.schedule_roi_align),
Expand Down
2 changes: 2 additions & 0 deletions python/tvm/relay/op/strategy/x86.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,6 +380,8 @@ def sparse_dense_strategy_cpu(attrs, inputs, out_type, target):
def roi_align_strategy_cpu(attrs, inputs, out_type, target):
"""roi_align x86 strategy"""
strategy = _op.OpStrategy()
layout = attrs.layout
assert layout == "NCHW", "only support nchw for now"
strategy.add_implementation(
wrap_compute_roi_align(topi.x86.roi_align_nchw),
wrap_topi_schedule(topi.generic.schedule_roi_align),
Expand Down
43 changes: 43 additions & 0 deletions python/tvm/relay/op/vision/_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,49 @@
reg.register_strategy("vision.roi_align", strategy.roi_align_strategy)
reg.register_pattern("vision.roi_align", OpPattern.OUT_ELEMWISE_FUSABLE)


@reg.register_convert_op_layout("vision.roi_align")
def convert_roi_align(attrs, inputs, tinfos, desired_layouts):
"""Convert Layout pass registration for roi_align op.

Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current roi_align
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
tinfos : list of types
List of input and output types
desired_layouts : list of layout strings
List of layouts defining our desired
layout for the data and rois inputs respectively.

Returns
-------
result : tvm.relay.Expr
The transformed expr
"""
# pylint: disable=import-outside-toplevel
from tvm import relay

data, rois = inputs
new_attrs = dict(attrs)
assert (
len(desired_layouts) == 2
), "A desired layout is expected for both of vision.roi_align's inputs"

desired_data_layout, desired_rois_layout = map(str, desired_layouts)
assert desired_data_layout != "default", "Data layout cannot be default"
assert desired_rois_layout == "default", "Rois layout must be default"

new_attrs["layout"] = desired_data_layout
# rois layout not change
if desired_data_layout in ["NCHW", "NHWC"]:
return relay.vision.roi_align(data, rois, **new_attrs)

raise ValueError("Layout %s is not yet supported." % desired_data_layout)


# roi_pool
@reg.register_compute("vision.roi_pool")
def compute_roi_pool(attrs, inputs, _):
Expand Down
34 changes: 30 additions & 4 deletions src/relay/op/vision/rcnn_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@
#include <tvm/relay/op.h>
#include <tvm/relay/op_attr_types.h>

#include "../../transforms/infer_layout_util.h"

namespace tvm {
namespace relay {

Expand All @@ -43,14 +45,36 @@ bool ROIAlignRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
CHECK(roi_align_attrs);
CHECK_EQ(dshape.size(), 4) << "Input data should be 4-D.";
CHECK_EQ(rshape.size(), 2) << "Input rois should be 2-D.";
CHECK_EQ(roi_align_attrs->layout, "NCHW") << "ROI Align only supports NCHW layout";
// assign output type
std::vector<IndexExpr> oshape(
{rshape[0], dshape[1], roi_align_attrs->pooled_size[0], roi_align_attrs->pooled_size[1]});
std::vector<IndexExpr> oshape;
if (roi_align_attrs->layout == "NCHW") {
oshape = {rshape[0], dshape[1], roi_align_attrs->pooled_size[0],
roi_align_attrs->pooled_size[1]};
} else {
CHECK_EQ(roi_align_attrs->layout, "NHWC") << "Unexpected ROI Align layout";
oshape = {rshape[0], roi_align_attrs->pooled_size[0], roi_align_attrs->pooled_size[1],
dshape[3]};
}

reporter->Assign(types[2], TensorType(oshape, data->dtype));
return true;
}

template <typename T>
Array<Array<Layout> > ROIAlignInferCorrectLayout(const Attrs& attrs,
Copy link
Contributor

@kevinthesun kevinthesun Sep 16, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are still issues for ROIAlignInferCorrectLayout. I applied this patch and pytorch od model compilation will fail with seg fault.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The issue can be reproduced by applying this patch to #6449 and run test_detection_models() in tests/python/frontend/pytorch/test_object_detection.py.

const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<tvm::relay::Type>& old_in_types) {
// NOTE: Discard "const" qualifier here.
T* params = const_cast<T*>(attrs.as<T>());
Layout data_layout = params->layout;

// Layout inference needs to define the layout for all inputs and output data layouts.
// For roi_align, the second inputs is 2-D tensor with shape [num_roi, 5].
// So, we set the layout as "N5".
return Array<Array<Layout> >{{data_layout, Layout("N5")}, {data_layout}};
}

Expr MakeROIAlign(Expr data, Expr rois, Array<IndexExpr> pooled_size, double spatial_scale,
int sample_ratio, String layout) {
auto attrs = make_object<ROIAlignAttrs>();
Expand Down Expand Up @@ -78,7 +102,9 @@ RELAY_REGISTER_OP("vision.roi_align")
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("rois", "Tensor", "The input rois")
.set_support_level(5)
.add_type_rel("ROIAlign", ROIAlignRel);
.add_type_rel("ROIAlign", ROIAlignRel)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout",
ROIAlignInferCorrectLayout<ROIAlignAttrs>);

TVM_REGISTER_NODE_TYPE(ROIPoolAttrs);

Expand Down
54 changes: 54 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -841,6 +841,59 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_roi_align_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
weight1 = relay.var("weight1", shape=(64, 64, 3, 3))
y = relay.nn.conv2d(
x,
weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
)
rois = relay.var("rois", shape=(32, 5))
y = relay.vision.roi_align(
y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NCHW"
)
y = relay.Function(analysis.free_vars(y), y)
return y

def expected():
x = relay.var("x", shape=(1, 64, 56, 56))
weight1 = relay.var("weight1", shape=(64, 64, 3, 3))
x = relay.layout_transform(x, "NCHW", "NHWC")
weight1 = relay.layout_transform(weight1, "OIHW", "HWIO")
y = relay.nn.conv2d(
x,
weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
)
rois = relay.var("rois", shape=(32, 5))
y = relay.vision.roi_align(
y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NHWC"
)
ret = relay.layout_transform(y, "NHWC", "NCHW")
y = relay.Function(analysis.free_vars(ret), ret)
return y

a = before()
desired_layouts = {
"nn.conv2d": ["NHWC", "HWIO"],
"vision.roi_align": ["NHWC", "default"],
}
a = run_opt_pass(a, transform.ConvertLayout(desired_layouts))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_default_keyword():
""" Check that the default keyword selects correct TVM default layout. """

Expand Down Expand Up @@ -1005,5 +1058,6 @@ def expected():
test_qnn_conv_nhwc_convert_layout()
test_conv_convert_kernel_layout()
test_conv_transpose_convert_layout()
test_conv_roi_align_convert_layout()
test_default_keyword()
test_different_ops_convert_layout()