Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BYOC] support arbitrary input dims for add/mul/relu of dnnl c_src codegen #9127

Merged
merged 3 commits into from
Sep 29, 2021
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 22 additions & 16 deletions src/relay/backend/contrib/dnnl/codegen.cc
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,15 @@ inline size_t GetShape1DSize(const Type& type) {
return std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
}

inline std::string GetShapeString(std::vector<int> shape) {
std::string v = "std::vector<long int>{";
for (auto s : shape) {
v += std::to_string(s) + ",";
}
v += "}";
return v;
}

std::vector<std::string> Conv2d(const CallNode* call) {
std::vector<std::string> args;
const auto* conv2d_attr = call->attrs.as<Conv2DAttrs>();
Expand Down Expand Up @@ -98,12 +107,7 @@ std::vector<std::string> Dense(const CallNode* call) {
std::vector<std::string> Relu(const CallNode* call) {
std::vector<std::string> args;
auto ishape = GetShape(call->args[0]->checked_type());

// Args: N, C, H, W
for (auto s : ishape) {
args.push_back(std::to_string(s));
}

sunwayforever marked this conversation as resolved.
Show resolved Hide resolved
args.push_back(GetShapeString(ishape));
return args;
}

Expand All @@ -126,12 +130,16 @@ std::vector<std::string> BatchNorm(const CallNode* call) {
std::vector<std::string> Add(const CallNode* call) {
std::vector<std::string> args;
auto ishape = GetShape(call->args[0]->checked_type());
args.push_back("0");
args.push_back(GetShapeString(ishape));
return args;
}

// Args: H, W
for (auto s : ishape) {
args.push_back(std::to_string(s));
}

std::vector<std::string> Multiply(const CallNode* call) {
sunwayforever marked this conversation as resolved.
Show resolved Hide resolved
std::vector<std::string> args;
auto ishape = GetShape(call->args[0]->checked_type());
args.push_back("1");
args.push_back(GetShapeString(ishape));
return args;
}

Expand Down Expand Up @@ -239,11 +247,9 @@ class CodegenDNNL : public MemoizedExprTranslator<std::vector<Output>>, public C

using ArgFunType = std::function<std::vector<std::string>(const CallNode*)>;
static const std::map<std::string, std::pair<std::string, ArgFunType>> op_map = {
{"nn.conv2d", {"dnnl_conv2d", Conv2d}},
{"nn.dense", {"dnnl_dense", Dense}},
{"nn.relu", {"dnnl_relu", Relu}},
{"nn.batch_norm", {"dnnl_bn", BatchNorm}},
{"add", {"dnnl_add", Add}},
{"nn.conv2d", {"dnnl_conv2d", Conv2d}}, {"nn.dense", {"dnnl_dense", Dense}},
{"nn.relu", {"dnnl_relu", Relu}}, {"nn.batch_norm", {"dnnl_bn", BatchNorm}},
{"add", {"dnnl_binary_op", Add}}, {"multiply", {"dnnl_binary_op", Multiply}},
};

const auto op_name = GetRef<Op>(op_node)->name;
Expand Down
64 changes: 47 additions & 17 deletions src/runtime/contrib/dnnl/dnnl.cc
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,32 @@ typedef struct {
void** data;
} DnnlPackedArgs;

inline dnnl::memory::desc GenDNNLMemDescByShape(const dnnl::memory::dims& shape,
memory::data_type dtype) {
using tag = memory::format_tag;

dnnl::memory::desc data_md;

switch (shape.size()) {
case 2:
data_md = dnnl::memory::desc({shape, dtype, tag::ab});
break;
case 3:
data_md = dnnl::memory::desc({shape, dtype, tag::abc});
break;
case 4:
data_md = dnnl::memory::desc({shape, dtype, tag::abcd});
break;
case 5:
data_md = dnnl::memory::desc({shape, dtype, tag::abcde});
break;
default:
assert(true);
sunwayforever marked this conversation as resolved.
Show resolved Hide resolved
break;
}
return data_md;
}

// Read from memory, write to handle
inline void read_from_dnnl_memory(void* handle, const memory& mem) {
size_t bytes = mem.get_desc().get_size();
Expand Down Expand Up @@ -175,16 +201,13 @@ extern "C" void dnnl_dense(float* data, float* weight, float* out, int p_B_, int
read_from_dnnl_memory(out, dst_memory);
}

extern "C" void dnnl_relu(float* data, float* out, int p_N_, int p_C_, int p_H_, int p_W_) {
using tag = memory::format_tag;
extern "C" void dnnl_relu(float* data, float* out, std::vector<int64_t> shape) {
using dt = memory::data_type;

engine eng(engine::kind::cpu, 0);
stream s(eng);

memory::dims data_tz = {p_N_, p_C_, p_H_, p_W_};

auto data_md = memory::desc{{data_tz}, dt::f32, tag::nchw};
auto data_md = GenDNNLMemDescByShape(shape, dt::f32);

auto data_memory = memory(data_md, eng, data);
auto dst_memory = memory(data_md, eng);
Expand Down Expand Up @@ -241,27 +264,34 @@ extern "C" void dnnl_bn(float* data, float* gamma, float* beta, float* mean, flo
free(weight);
}

extern "C" void dnnl_add(float* data, float* weight, float* out, int p_N_, int p_C_, int p_H_,
int p_W_) {
using tag = memory::format_tag;
extern "C" void dnnl_binary_op(float* data, float* weight, float* out, int algo_type,
std::vector<int64_t> shape) {
using dt = memory::data_type;

engine eng(engine::kind::cpu, 0);
stream s(eng);

memory::dims data_tz = {p_N_, p_C_, p_H_, p_W_};

auto data_md = memory::desc{{data_tz}, dt::f32, tag::nchw};
auto weight_md = memory::desc({{data_tz}, dt::f32, tag::nchw});
auto dst_md = memory::desc({{data_tz}, dt::f32, tag::nchw});
auto data_md = GenDNNLMemDescByShape(shape, dt::f32);

auto data_memory = memory(data_md, eng, data);
auto weight_memory = memory(weight_md, eng, weight);
auto dst_memory = memory(dst_md, eng);
auto weight_memory = memory(data_md, eng, weight);
auto dst_memory = memory(data_md, eng);

auto add_desc = binary::desc(algorithm::binary_add, data_md, weight_md, dst_md);
algorithm algo = algorithm::undef;
switch (algo_type) {
case 0:
algo = algorithm::binary_add;
break;
case 1:
algo = algorithm::binary_mul;
default:
assert(true);
break;
}

auto add_desc = binary::desc(algo, data_md, data_md, data_md);
auto add_prim_desc = binary::primitive_desc(add_desc, eng);
assert(dst_md == add_prim_desc.dst_desc());
assert(data_md == add_prim_desc.dst_desc());

auto add = binary(add_prim_desc);
add.execute(
Expand Down
8 changes: 5 additions & 3 deletions src/runtime/contrib/dnnl/dnnl_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@

#include <tvm/runtime/c_runtime_api.h>

#include <vector>

#include "dnnl.hpp"

namespace tvm {
Expand Down Expand Up @@ -54,14 +56,14 @@ extern "C" TVM_DLL void dnnl_fused_conv2d_bias_relu(float* data, float* weights,
extern "C" TVM_DLL void dnnl_dense(float* data, float* weight, float* out, int p_B_, int p_I_,
int p_O_);

extern "C" TVM_DLL void dnnl_relu(float* data, float* out, int p_N_, int p_C_, int p_H_, int p_W_);
extern "C" TVM_DLL void dnnl_relu(float* data, float* out, std::vector<int64_t> shape);

extern "C" TVM_DLL void dnnl_bn(float* data, float* gamma, float* beta, float* mean,
float* variance, float* out, float* new_mean, float* new_variance,
int p_n_, int p_c_, int p_h_, int p_w_, int p_e_);

extern "C" TVM_DLL void dnnl_add(float* data, float* weight, float* out, int p_n_, int p_c_,
int p_h_, int p_w_);
extern "C" TVM_DLL void dnnl_binary_op(float* data, float* weight, float* out, int binary_algo,
std::vector<int64_t> shape);

} // namespace contrib
} // namespace runtime
Expand Down