Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the Arm(R) Ethos(TM)-U NPU identity operator #9457

Merged
merged 3 commits into from
Nov 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 113 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/legalize.py
Original file line number Diff line number Diff line change
Expand Up @@ -631,6 +631,116 @@ def __call__(self, *args, **kwargs):
pass


class StridedSliceRewriter(DFPatternCallback):
"""This pass brings the strided slice out of the partitioned function"""

def __init__(self):
super().__init__(require_type=True, rewrite_once=True)
self.pattern = (
wildcard().has_attr({"Composite": ethosu_patterns.StridedSliceParams.composite_name})
)(wildcard())

def callback(
self, pre: tvm.relay.Expr, post: tvm.relay.Expr, node_map: tvm.ir.container.Map
) -> tvm.relay.Expr:

slice_input = post.args[0]
params = ethosu_patterns.StridedSliceParams(post.op.body)
strided_slice = relay.op.strided_slice(
slice_input,
params.begin,
params.end,
strides=params.strides,
axes=params.axes,
slice_mode=params.slice_mode,
)
return strided_slice


@ir.transform.module_pass(opt_level=1)
class LegalizeStridedSlice:
"""This is the pass that wraps StridedSliceRewriter"""

def transform_module(
self, mod: tvm.ir.IRModule, ctx: tvm.ir.transform.PassContext
) -> tvm.ir.IRModule:
for global_var, func in mod.functions.items():
func = rewrite(StridedSliceRewriter(), func)
mod.update_func(global_var, func)
return mod

def __call__(self, *args, **kwargs):
pass


class ReshapeRewriter(DFPatternCallback):
"""This pass brings the reshape out of the partitioned function"""

def __init__(self):
super().__init__(require_type=True, rewrite_once=True)
self.pattern = (
wildcard().has_attr({"Composite": ethosu_patterns.ReshapeParams.composite_name})
)(wildcard())

def callback(
self, pre: tvm.relay.Expr, post: tvm.relay.Expr, node_map: tvm.ir.container.Map
) -> tvm.relay.Expr:
reshape_input = post.args[0]
reshape_params = ethosu_patterns.ReshapeParams(post.op.body)
new_shape = reshape_params.new_shape
return relay.op.reshape(reshape_input, newshape=new_shape)


@ir.transform.module_pass(opt_level=1)
class LegalizeReshape:
"""This is the pass that wraps ReshapeRewriter"""

def transform_module(
self, mod: tvm.ir.IRModule, ctx: tvm.ir.transform.PassContext
) -> tvm.ir.IRModule:
for global_var, func in mod.functions.items():
func = rewrite(ReshapeRewriter(), func)
mod.update_func(global_var, func)
return mod

def __call__(self, *args, **kwargs):
pass


class NoOpRewriter(DFPatternCallback):
"""This pass adds an idenity operator to reshape and strided slice to avoid a no op
without a consumer"""

def __init__(self):
super().__init__(require_type=True, rewrite_once=True)
self.reshape = is_op("reshape")(wildcard())
self.strided_slice = is_op("strided_slice")(wildcard())
self.pattern = self.reshape | self.strided_slice

def callback(
self, pre: tvm.relay.Expr, post: tvm.relay.Expr, node_map: tvm.ir.container.Map
) -> tvm.relay.Expr:
if pre.checked_type.dtype == "int32":
return post
return ethosu_ops.ethosu_identity(ifm=post, lut=relay.const([], dtype="int8"))


@ir.transform.module_pass(opt_level=1)
class LegalizeNoOps:
"""This is the pass that wraps RewriteNoOps"""

def transform_module(
self, mod: tvm.ir.IRModule, ctx: tvm.ir.transform.PassContext
) -> tvm.ir.IRModule:
for global_var, func in mod.functions.items():
func = rewrite(NoOpRewriter(), func)
mod.update_func(global_var, func)
return mod

def __call__(self, *args, **kwargs):
pass


@ir.transform.module_pass(opt_level=1)
class LegalizeEthosU:
"""This is the pass to call graph-rewrites to perform graph transformation
Expand All @@ -655,6 +765,9 @@ def transform_module(
mod = LegalizeMin()(mod)
mod = LegalizeMax()(mod)
mod = LegalizeShl()(mod)
mod = LegalizeReshape()(mod)
mod = LegalizeStridedSlice()(mod)
mod = LegalizeNoOps()(mod)
return mod

def __call__(self, *args, **kwargs):
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/op/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,4 @@
from .depthwise import ethosu_depthwise_conv2d
from .pooling import ethosu_pooling
from .binary_elementwise import ethosu_binary_elementwise
from .identity import ethosu_identity
98 changes: 98 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/op/identity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-argument
"""Relay identity operator for Arm(R) Ethos(TM)-U NPU"""

import tvm
from tvm.relay.op import _make
from tvm.topi.generic import schedule_injective
from tvm.relay.op.op import OpStrategy
from tvm.relay.op import strategy as _strategy

from ..te import identity_compute


@tvm.ir.register_op_attr("contrib.ethosu.identity", "FTVMCompute")
def create_ethosu_identity_compute(attrs, args, out_type):
"""Create an ethosu_identity compute op."""
ifm = args[0]
lut = args[1]
ifm_scale = attrs.ifm_scale
ifm_zero_point = attrs.ifm_zero_point
ofm_scale = attrs.ofm_scale
ofm_zero_point = attrs.ofm_zero_point
activation = attrs.activation
op = identity_compute(
ifm, lut, ifm_scale, ifm_zero_point, ofm_scale, ofm_zero_point, activation
)
return [op]


@tvm.ir.register_op_attr("contrib.ethosu.identity", "FTVMStrategy")
def identity_strategy_ethosu(attrs, inputs, out_type, target):
strategy = OpStrategy()
strategy.add_implementation(
create_ethosu_identity_compute,
_strategy.wrap_topi_schedule(schedule_injective),
name="ethosu_identity",
)
return strategy


def ethosu_identity(
ifm: tvm.relay.Expr,
lut: tvm.relay.Expr,
ifm_scale: float = 1,
ifm_zero_point: int = 0,
ofm_scale: float = 1,
ofm_zero_point: int = 0,
activation: str = "NONE",
) -> tvm.relay.Call:
"""The Identity operator that runs on the NPU.

This operator takes in a tensor of any shape and returns the same tensor,
with the data optionally requantized.

Parameters
----------
ifm : tvm.relay.Expr
The Input Feature Map tensor (IFM).
lut : tvm.relay.Expr
The look-up table values to use if activation = "LUT", "TANH" or "SIGMOID".
ifm_scale : float
The quantization scale for the Input Feature Map tensor.
ifm_zero_point : int
The quantization zero point for the Input Feature Map tensor.
ofm_scale : float
The quantization scale for the Output Feature Map tensor.
ofm_zero_point : int
The quantization zero point for the Output Feature Map tensor.
activation : str, optional
The activation function to use.
"NONE" - no activation function.
"TANH" - tanh activation function.
"SIGMOID" - sigmoid activation function.
"LUT" - use a look-up table to perform the activation function.

Returns
-------
out : tvm.relay.Call
A call to the ethosu_identity op.
"""
return _make.ethosu_identity(
ifm, lut, ifm_scale, ifm_zero_point, ofm_scale, ofm_zero_point, activation
)
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/te/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,4 @@
from .depthwise import *
from .pooling import *
from .binary_elementwise import *
from .identity import *
35 changes: 23 additions & 12 deletions python/tvm/relay/backend/contrib/ethosu/te/dma.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,63 +67,74 @@ def _pad(*indices):
return _pad


def read_compute(tensor: te.Tensor, layout: str, zero_point: int, scale: float) -> te.Tensor:
def read_compute(
tensor: te.Tensor, zero_point: int, scale: float, layout: Optional[str] = None
) -> te.Tensor:
"""A tensor expression which represents a read.

Parameters
----------
tensor : te.Tensor
The tensor to read.
layout : str
The layout of the tensor, either NHWC or NHCWB16.
zero_point : int
The zero point of the tensor.
scale : float
The scale of the tensor.
layout : Optional[str]
The layout of the tensor, either NHWC or NHCWB16.

Returns
-------
te.Tensor
The tensor having been read.

"""
assert layout in {"NHWC", "NHCWB16"}
read_attrs = {
"op": "ethosu_read",
"layout": layout,
"zero_point": zero_point,
"scale": scale,
}

if layout:
assert layout in {"NHWC", "NHCWB16"}
read_attrs["layout"] = layout

return te.compute(tensor.shape, lambda *i: tensor(*i), name="ethosu_read", attrs=read_attrs)


def write_compute(tensor: te.Tensor, layout: str, zero_point: int, scale: float) -> te.Tensor:
def write_compute(
tensor: te.Tensor, zero_point: int, scale: float, layout: Optional[str] = None
) -> te.Tensor:
"""A tensor expression which represents a write.

Parameters
----------
tensor : te.Tensor
The tensor to write.
layout : str
The layout of the tensor, either NHWC or NHCWB16.
zero_point : int
The zero point of the tensor.
scale : float
The scale of the tensor.
layout : Optional[str]
The layout of the tensor, either NHWC or NHCWB16.

Returns
-------
te.Tensor
The tensor having been written.

"""
assert layout in {"NHWC", "NHCWB16"}

write_attrs = {
"op": "ethosu_write",
"layout": layout,
"zero_point": zero_point,
"scale": scale,
}

if layout:
assert layout in {"NHWC", "NHCWB16"}
write_attrs["layout"] = layout

return te.compute(
tensor.shape,
lambda *i: tensor(*i),
Expand Down Expand Up @@ -278,7 +289,7 @@ def dma_ifm_compute(
The dma-ed IFM tensor.

"""
read_ifm = read_compute(ifm, layout, zero_point, scale)
read_ifm = read_compute(ifm, zero_point, scale, layout=layout)
convert_to_nhwc_ifm = convert_to_nhwc_compute(read_ifm, layout, channels)
return pad_compute(convert_to_nhwc_ifm, padding)

Expand Down Expand Up @@ -308,4 +319,4 @@ def dma_ofm_compute(

"""
convert_to_nhcwb16_ofm = convert_to_nhcwb16_compute(ofm, layout, channels)
return write_compute(convert_to_nhcwb16_ofm, layout, zero_point, scale)
return write_compute(convert_to_nhcwb16_ofm, zero_point, scale, layout=layout)
Loading