Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Restore the use of ONNX_DEFAULT_CONFIGS["use_nt_batch_matmul"] #9925

Merged
merged 1 commit into from
Jan 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,8 +248,14 @@ def flatten_to_nd(x, x_shape, nd=3):
# Convert a and b into 3 dimensional tensors.
a = flatten_to_nd(inputs[0], a_shape, 3)
b = flatten_to_nd(inputs[1], b_shape, 3)
# Perform a NN batch matmul.
output = _op.nn.batch_matmul(a, b, out_dtype=out_dtype, transpose_b=False)
if ONNX_DEFAULT_CONFIGS["use_nt_batch_matmul"]:
# Transpose matrix dimensions of b.
bt = _op.transpose(b, [0, 2, 1])
# Perform a NT batch matmul.
output = _op.nn.batch_matmul(a, bt, out_dtype=out_dtype)
else:
# Perform a NN batch matmul.
output = _op.nn.batch_matmul(a, b, out_dtype=out_dtype, transpose_b=False)
# Determine the output batch dimension.
if a_rank > b_rank:
out_batch = _op.strided_slice(a_shape, [0], [a_rank - 2])
Expand Down
34 changes: 34 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1281,6 +1281,39 @@ def verify_batch_matmul(a_shape, b_shape, out_shape, convert_config=None):
)


@tvm.testing.parametrize_targets
def test_use_nt_batch_matmul(target, dev):
a_shape = (2, 3, 4)
b_shape = (2, 4, 3)
out_shape = [2, 3, 3]
a_array = np.random.uniform(size=a_shape).astype("float32")
b_array = np.random.uniform(size=b_shape).astype("float32")

for use_nt_batch_matmul in [True, False]:
mul_node = helper.make_node("MatMul", ["a", "b"], ["out"])

graph = helper.make_graph(
[mul_node],
"matmul_test",
inputs=[
helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)),
helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)),
],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))],
)

model = helper.make_model(graph, producer_name="matmul_test")
_, shape_dict = get_input_data_shape_dict(model, [a_array, b_array])

mod, _ = relay.frontend.from_onnx(
model, shape_dict, convert_config={"use_nt_batch_matmul": use_nt_batch_matmul}
)
has_transpose_op = "transpose" in str(mod)
# use_nt_batch_matmul implies, TVM converts qualified onnx `matmul`
# to `transpose(weight) + nn.batch_matmul_NT`, otherwise to `nn.batch_matmul`
assert has_transpose_op == use_nt_batch_matmul


@tvm.testing.parametrize_targets
def test_matmulinteger16(target, dev):
def verify_matmulinteger16(a_shape, b_shape, out_shape):
Expand Down Expand Up @@ -6287,6 +6320,7 @@ def verify_scan(
test_random_uniform()
test_convinteger()
test_batch_matmul()
test_use_nt_batch_matmul()
test_global_lppool()
test_scan()
test_random_uniform_like()
Expand Down