-
Notifications
You must be signed in to change notification settings - Fork 147
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add `RewardModelScore` step * Use logits * Update docstring * Fix unit test * Adjust abs tolerance
- Loading branch information
1 parent
974b45e
commit 20bd1e3
Showing
6 changed files
with
331 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
# Copyright 2023-present, Argilla, Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
from typing import TYPE_CHECKING, Any, Dict, List, Union | ||
|
||
from pydantic import Field, PrivateAttr, SecretStr | ||
|
||
from distilabel.steps.base import Step, StepInput | ||
from distilabel.utils.huggingface import HF_TOKEN_ENV_VAR | ||
|
||
if TYPE_CHECKING: | ||
import torch | ||
from transformers import PreTrainedModel, PreTrainedTokenizer | ||
|
||
from distilabel.steps.tasks.typing import ChatType | ||
from distilabel.steps.typing import StepOutput | ||
|
||
|
||
class RewardModelScore(Step): | ||
"""Assign a score to a response using a Reward Model. | ||
`RewardModelScore` is a `Step` that using a Reward Model (RM) loaded using `transformers`, | ||
assigns an score to a response generated for an instruction, or a score to a multi-turn | ||
conversation. | ||
Attributes: | ||
model: the model Hugging Face Hub repo id or a path to a directory containing the | ||
model weights and configuration files. | ||
revision: if `model` refers to a Hugging Face Hub repository, then the revision | ||
(e.g. a branch name or a commit id) to use. Defaults to `"main"`. | ||
torch_dtype: the torch dtype to use for the model e.g. "float16", "float32", etc. | ||
Defaults to `"auto"`. | ||
trust_remote_code: whether to allow fetching and executing remote code fetched | ||
from the repository in the Hub. Defaults to `False`. | ||
device_map: a dictionary mapping each layer of the model to a device, or a mode like `"sequential"` or `"auto"`. Defaults to `None`. | ||
token: the Hugging Face Hub token that will be used to authenticate to the Hugging | ||
Face Hub. If not provided, the `HF_TOKEN` environment or `huggingface_hub` package | ||
local configuration will be used. Defaults to `None`. | ||
truncation: whether to truncate sequences at the maximum length. Defaults to `False`. | ||
max_length: maximun length to use for padding or truncation. Defaults to `None`. | ||
Input columns: | ||
- instruction (`str`, optional): the instruction used to generate a `response`. | ||
If provided, then `response` must be provided too. | ||
- response (`str`, optional): the response generated for `instruction`. If provided, | ||
then `instruction` must be provide too. | ||
- conversation (`ChatType`, optional): a multi-turn conversation. If not provided, | ||
then `instruction` and `response` columns must be provided. | ||
Output columns: | ||
- score (`float`): the score given by the reward model for the instruction-response | ||
pair or the conversation. | ||
Categories: | ||
- scorer | ||
Examples: | ||
Assigning an score for an instruction-response pair: | ||
```python | ||
from distilabel.steps import RewardModelScore | ||
step = RewardModelScore( | ||
model="RLHFlow/ArmoRM-Llama3-8B-v0.1", device_map="auto", trust_remote_code=True | ||
) | ||
step.load() | ||
result = next( | ||
step.process( | ||
inputs=[ | ||
{ | ||
"instruction": "How much is 2+2?", | ||
"response": "The output of 2+2 is 4", | ||
}, | ||
{"instruction": "How much is 2+2?", "response": "4"}, | ||
] | ||
) | ||
) | ||
# [ | ||
# {'instruction': 'How much is 2+2?', 'response': 'The output of 2+2 is 4', 'score': 0.11690367758274078}, | ||
# {'instruction': 'How much is 2+2?', 'response': '4', 'score': 0.10300665348768234} | ||
# ] | ||
``` | ||
Assigning an score for a multi-turn conversation: | ||
```python | ||
from distilabel.steps import RewardModelScore | ||
step = RewardModelScore( | ||
model="RLHFlow/ArmoRM-Llama3-8B-v0.1", device_map="auto", trust_remote_code=True | ||
) | ||
step.load() | ||
result = next( | ||
step.process( | ||
inputs=[ | ||
{ | ||
"conversation": [ | ||
{"role": "user", "content": "How much is 2+2?"}, | ||
{"role": "assistant", "content": "The output of 2+2 is 4"}, | ||
], | ||
}, | ||
{ | ||
"conversation": [ | ||
{"role": "user", "content": "How much is 2+2?"}, | ||
{"role": "assistant", "content": "4"}, | ||
], | ||
}, | ||
] | ||
) | ||
) | ||
# [ | ||
# {'conversation': [{'role': 'user', 'content': 'How much is 2+2?'}, {'role': 'assistant', 'content': 'The output of 2+2 is 4'}], 'score': 0.11690367758274078}, | ||
# {'conversation': [{'role': 'user', 'content': 'How much is 2+2?'}, {'role': 'assistant', 'content': '4'}], 'score': 0.10300665348768234} | ||
# ] | ||
``` | ||
""" | ||
|
||
model: str | ||
revision: str = "main" | ||
torch_dtype: str = "auto" | ||
trust_remote_code: bool = False | ||
device_map: Union[str, Dict[str, Any], None] = None | ||
token: Union[SecretStr, None] = Field( | ||
default_factory=lambda: os.getenv(HF_TOKEN_ENV_VAR), description="" | ||
) | ||
truncation: bool = False | ||
max_length: Union[int, None] = None | ||
|
||
_model: Union["PreTrainedModel", None] = PrivateAttr(None) | ||
_tokenizer: Union["PreTrainedTokenizer", None] = PrivateAttr(None) | ||
|
||
def load(self) -> None: | ||
super().load() | ||
|
||
try: | ||
from transformers import AutoModelForSequenceClassification, AutoTokenizer | ||
except ImportError as e: | ||
raise ImportError( | ||
"`transformers` is not installed. Please install it using `pip install transformers`." | ||
) from e | ||
|
||
token = self.token.get_secret_value() if self.token is not None else self.token | ||
|
||
self._model = AutoModelForSequenceClassification.from_pretrained( | ||
self.model, | ||
revision=self.revision, | ||
torch_dtype=self.torch_dtype, | ||
trust_remote_code=self.trust_remote_code, | ||
device_map=self.device_map, | ||
token=token, | ||
) | ||
self._tokenizer = AutoTokenizer.from_pretrained( | ||
self.model, | ||
revision=self.revision, | ||
torch_dtype=self.torch_dtype, | ||
trust_remote_code=self.trust_remote_code, | ||
token=token, | ||
) | ||
|
||
@property | ||
def inputs(self) -> List[str]: | ||
"""Either `response` and `instruction`, or a `conversation` columns.""" | ||
return [] | ||
|
||
@property | ||
def outputs(self) -> List[str]: | ||
"""The `score` given by the reward model.""" | ||
return ["score"] | ||
|
||
def _prepare_conversation(self, input: Dict[str, Any]) -> "ChatType": | ||
if "instruction" in input and "response" in input: | ||
return [ | ||
{"role": "user", "content": input["instruction"]}, | ||
{"role": "assistant", "content": input["response"]}, | ||
] | ||
|
||
return input["conversation"] | ||
|
||
def _prepare_inputs(self, inputs: List[Dict[str, Any]]) -> "torch.Tensor": | ||
return self._tokenizer.apply_chat_template( # type: ignore | ||
[self._prepare_conversation(input) for input in inputs], # type: ignore | ||
return_tensors="pt", | ||
padding=True, | ||
truncation=self.truncation, | ||
max_length=self.max_length, | ||
).to(self._model.device) # type: ignore | ||
|
||
def _inference(self, inputs: List[Dict[str, Any]]) -> List[float]: | ||
import torch | ||
|
||
input_ids = self._prepare_inputs(inputs) | ||
with torch.no_grad(): | ||
output = self._model(input_ids) # type: ignore | ||
logits = output.logits | ||
if logits.shape == (2, 1): | ||
logits = logits.squeeze(-1) | ||
return logits.tolist() | ||
|
||
def process(self, inputs: StepInput) -> "StepOutput": # type: ignore | ||
scores = self._inference(inputs) | ||
for input, score in zip(inputs, scores): | ||
input["score"] = score | ||
yield inputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.