Skip to content

Commit

Permalink
Updating Decaf documentation.
Browse files Browse the repository at this point in the history
  • Loading branch information
armfazh committed Jul 24, 2020
1 parent 6f573e6 commit f5957e7
Show file tree
Hide file tree
Showing 3 changed files with 69 additions and 75 deletions.
8 changes: 4 additions & 4 deletions ecc/decaf/constants.go
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,10 @@ const EncodingSize = fp.Size
var ErrInvalidDecoding = errors.New("invalid decoding")

var (
// aMinusD is paramA-paramD used in Decaf.
aMinusDTwist = fp.Elt{0xa9, 0x98}
// sqrtAMinusDTwist is the smallest sqrt(paramATwist-paramDTwist) used in Decaf.
sqrtAMinusDTwist = fp.Elt{
// aMinusD is paramA-paramD = (-1)-(-39082) = 39081.
aMinusD = fp.Elt{0xa9, 0x98}
// sqrtAMinusD is the smallest root of sqrt(paramA-paramD) = sqrt(39081).
sqrtAMinusD = fp.Elt{
0x36, 0x27, 0x57, 0x45, 0x0f, 0xef, 0x42, 0x96,
0x52, 0xce, 0x20, 0xaa, 0xf6, 0x7b, 0x33, 0x60,
0xd2, 0xde, 0x6e, 0xfd, 0xf4, 0x66, 0x9a, 0x83,
Expand Down
135 changes: 64 additions & 71 deletions ecc/decaf/decaf.go
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
//
// Decaf (3) is a prime-order group constructed as a quotient of groups. A Decaf
// element can be represented by any point in the coset P+J[2], where J is a
// Jacobi quartic and J[2] are its 2-torsion points.
// Jacobi quartic curve and J[2] are its 2-torsion points.
// Since P+J[2] has four points, Decaf specifies rules to choose one canonical
// representative, which has a unique encoding. Two representations are
// equivalent if they belong to the same coset.
Expand All @@ -15,17 +15,9 @@
//
// Version
//
// This implementation uses Decaf v1.0 of the encoding (see (4) for a complete
// This implementation uses Decaf v1.0 of the encoding (see (4,5) for a complete
// specification).
//
// Internals
//
// Decaf uses as internal representation the curve
// ted448: ax^2+y^2 = 1 + dx^2y^2, where a=-1 and d=-39082.
// This curve is 4-degree isogeneous to the Goldilocks curve, and 2-degree
// isogeneous to the Jacobi quartic. The ted448 curve was chosen because it
// provides faster arithmetic operations.
//
// References
//
// (1) https://www.shiftleft.org/papers/goldilocks
Expand All @@ -35,6 +27,8 @@
// (3) https://doi.org/10.1007/978-3-662-47989-6_34 and https://www.shiftleft.org/papers/decaf
//
// (4) https://sourceforge.net/p/ed448goldilocks/code/ci/v1.0/tree/
//
// (5) https://mailarchive.ietf.org/arch/msg/cfrg/S4YUTt_5eD4kwYbDuhEK0tXT1aM/
package decaf

import (
Expand Down Expand Up @@ -96,8 +90,8 @@ func (e *Elt) IsEqual(a *Elt) bool {
return fp.IsZero(l)
}

// UnmarshalBinary if succeeds returns a Decaf element by decoding the first
// DecafEncodingSize bytes of data.
// UnmarshalBinary interprets the first EncodingSize bytes passed in data, and
// returns a Decaf element.
func (e *Elt) UnmarshalBinary(data []byte) error {
if len(data) < EncodingSize {
return ErrInvalidDecoding
Expand All @@ -109,35 +103,34 @@ func (e *Elt) UnmarshalBinary(data []byte) error {
isLessThanP := isLessThan(s[:], p[:])
isPositiveS := fp.Parity(s) == 0

s2, den, num := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
isr, altx := &fp.Elt{}, &fp.Elt{}
t0, t1 := &fp.Elt{}, &fp.Elt{}
den, num := &fp.Elt{}, &fp.Elt{}
isr, altx, t0 := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
x, y := &fp.Elt{}, &fp.Elt{}
one := fp.One()
fp.Sqr(s2, s) // s2 = s^2
fp.Sub(den, &one, s2) // den = 1 + a*s^2
fp.Mul(t1, s2, &ted448.ParamD) // t1 = d*s^2
fp.Add(t1, t1, t1) // t1 = 2*d*s^2
fp.Add(t1, t1, t1) // t1 = 4*d*s^2
fp.Sqr(t0, den) // num = (1 + a*s^2)^2
fp.Sub(num, t0, t1) // num = (1 + a*s^2)^2 - 4*d*s^2
fp.Mul(t0, t0, num) // t0 = num*den^2
isQR := fp.InvSqrt(isr, &one, t0) // v = 1/sqrt(num*den^2)
fp.Mul(t1, den, isr) // altx = isr*den
fp.Mul(t1, t1, s) // altx = s*isr*den
fp.Add(t1, t1, t1) // t1 = 2*s*isr*den
fp.Mul(altx, t1, &sqrtAMinusDTwist) // altx = 2*s*isr*den*sqrt(A-D)
isNegX := fp.Parity(altx) // isNeg = sgn(altx)
fp.Neg(t0, isr) // t0 = -isr
fp.Cmov(isr, t0, uint(isNegX)) // if altx is negative then isr = -isr
fp.Sqr(x, isr) // x = isr^2
fp.Mul(x, x, den) // x = isr^2*den
fp.Mul(x, x, num) // x = isr^2*den*num
fp.Mul(x, x, s) // x = s*isr^2*den*num
fp.Add(x, x, x) // x = 2*s*isr^2*den*num
fp.Mul(y, isr, den) // y = isr*den
fp.Add(t0, &one, s2) // t0 = 1 - a*s^2
fp.Mul(y, y, t0) // y = (1 - a*s^2)*isr*den
paramD := ted448.ParamD()
fp.Sqr(t0, s) // t0 = s^2
fp.Sub(den, &one, t0) // den = 1 + a*s^2
fp.Add(y, &one, t0) // y = 1 - a*s^2
fp.Mul(num, t0, &paramD) // num = d*s^2
fp.Add(num, num, num) // = 2*d*s^2
fp.Add(num, num, num) // = 4*d*s^2
fp.Sqr(t0, den) // t0 = den^2 = (1 + a*s^2)^2
fp.Sub(num, t0, num) // num = den^2 - 4*d*s^2
fp.Mul(t0, t0, num) // t0 = den^2*num
isQR := fp.InvSqrt(isr, &one, t0) // isr = 1/(den*sqrt(num))
fp.Mul(altx, isr, den) // altx = isr*den
fp.Mul(altx, altx, s) // = s*isr*den
fp.Add(altx, altx, altx) // = 2*s*isr*den
fp.Mul(altx, altx, &sqrtAMinusD) // = 2*s*isr*den*sqrt(A-D)
isNegX := fp.Parity(altx) // isNeg = sgn(altx)
fp.Neg(t0, isr) // t0 = -isr
fp.Cmov(isr, t0, uint(isNegX)) // if altx is negative then isr = -isr
fp.Mul(t0, isr, den) // t0 = isr*den
fp.Mul(x, t0, isr) // x = isr^2*den
fp.Mul(x, x, num) // x = isr^2*den*num
fp.Mul(x, x, s) // x = s*isr^2*den*num
fp.Add(x, x, x) // x = 2*s*isr^2*den*num
fp.Mul(y, y, t0) // y = (1 - a*s^2)*isr*den

isValid := isPositiveS && isLessThanP && isQR
b := uint(*((*byte)(unsafe.Pointer(&isValid))))
Expand All @@ -146,45 +139,45 @@ func (e *Elt) UnmarshalBinary(data []byte) error {
fp.Cmov(&e.p.Ta, x, b)
fp.Cmov(&e.p.Tb, y, b)
fp.Cmov(&e.p.Z, &one, b)
var err error
if !isValid {
err = ErrInvalidDecoding
return ErrInvalidDecoding
}
return err
return nil
}

// MarshalBinary returns a unique encoding of the element e.
func (e *Elt) MarshalBinary() ([]byte, error) {
x, ta, tb, z := &e.p.X, &e.p.Ta, &e.p.Tb, &e.p.Z
one, t, t2, s := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
fp.SetOne(one)
fp.Mul(t, ta, tb) // t = ta*tb
t0, t1 := *x, *t // (t0,t1) = (x,t)
fp.Sqr(t2, x) // t2 = x^2
fp.AddSub(&t0, &t1) // (t0,t1) = (x+t,x-t)
fp.Mul(&t1, &t0, &t1) // t1 = (x+t)*(x-t)
fp.Mul(&t0, &t1, &aMinusDTwist) // t0 = (a-d)*(x+t)*(x-t)
fp.Mul(&t0, &t0, t2) // t0 = x^2*(a-d)*(x+t)*(x-t)
fp.InvSqrt(&t0, one, &t0) // t0 = 1/sqrt( x^2*(a-d)*(z+y)*(z-y) )
fp.Mul(&t1, &t1, &t0) // t1 = (z+y)*(z-y)/sqrt( x^2*(a-d)*(z+y)*(z-y) )
fp.Mul(t2, &t1, &sqrtAMinusDTwist) // t2 = sqrt( (z+y)*(z-y) )/z
isNeg := fp.Parity(t2) // isNeg = sgn(t2)
fp.Neg(t2, &t1) // t2 = -t1
fp.Cmov(&t1, t2, uint(isNeg)) // if t2 is negative then t1 = -t1
fp.Mul(s, &t1, z) // s = t1*z
fp.Sub(s, s, t) // s = t1*z - t
fp.Mul(s, s, x) // s = x*(t1*z - t)
fp.Mul(s, s, &t0) // s = isr*x*(t1*z - t)
fp.Mul(s, s, &aMinusDTwist) // s = (a-d)*isr*x*(t1*z - t)
isNeg = fp.Parity(s) // isNeg = sgn(s)
fp.Neg(&t0, s) // t0 = -s
fp.Cmov(s, &t0, uint(isNeg)) // if s is negative then s = -s

var encS [EncodingSize]byte
if err := fp.ToBytes(encS[:], s); err != nil {
return nil, err
}
return encS[:], nil
err := e.marshalBinary(encS[:])
return encS[:], err
}

func (e *Elt) marshalBinary(enc []byte) error {
x, ta, tb, z := &e.p.X, &e.p.Ta, &e.p.Tb, &e.p.Z
t, t2, s := &fp.Elt{}, &fp.Elt{}, &fp.Elt{}
one := fp.One()
fp.Mul(t, ta, tb) // t = ta*tb
t0, t1 := *x, *t // (t0,t1) = (x,t)
fp.AddSub(&t0, &t1) // (t0,t1) = (x+t,x-t)
fp.Mul(&t1, &t0, &t1) // t1 = num = (x+t)*(x-t) = x^2*(z^2-y^2)/z^2
fp.Mul(&t0, &t1, &aMinusD) // t0 = (a-d)*(x+t)*(x-t) = (a-d)*x^2*(z^2-y^2)/z^2
fp.Sqr(t2, x) // t2 = x^2
fp.Mul(&t0, &t0, t2) // t0 = x^2*(a-d)*(x+t)*(x-t) = (a-d)*x^4*(z^2-y^2)/z^2
fp.InvSqrt(&t0, &one, &t0) // t0 = isr = z/(x^2*sqrt((a-d)*(z^2-y^2)))
fp.Mul(&t1, &t1, &t0) // t1 = ratio = (z^2-y^2)/(z*sqrt((a-d)*(z^2-y^2)))
fp.Mul(t2, &t1, &sqrtAMinusD) // t2 = altx = sqrt((z^2-y^2))/z
isNeg := fp.Parity(t2) // isNeg = sgn(t2)
fp.Neg(t2, &t1) // t2 = -t1
fp.Cmov(&t1, t2, uint(isNeg)) // if t2 is negative then t1 = -t1
fp.Mul(s, &t1, z) // s = t1*z
fp.Sub(s, s, t) // s = t1*z - t
fp.Mul(s, s, x) // s = x*(t1*z - t)
fp.Mul(s, s, &t0) // s = isr*x*(t1*z - t)
fp.Mul(s, s, &aMinusD) // s = (a-d)*isr*x*(t1*z - t)
isNeg = fp.Parity(s) // isNeg = sgn(s)
fp.Neg(&t0, s) // t0 = -s
fp.Cmov(s, &t0, uint(isNeg)) // if s is negative then s = -s
return fp.ToBytes(enc[:], s)
}

// isLessThan returns true if 0 <= x < y, and assumes that slices are of the
Expand Down
1 change: 1 addition & 0 deletions ecc/decaf/decaf_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,7 @@ func TestPointNeg(t *testing.T) {
}
}
}

func TestDecafOrder(t *testing.T) {
const testTimes = 1 << 10
Q := &decaf.Elt{}
Expand Down

0 comments on commit f5957e7

Please sign in to comment.