Skip to content

Commit

Permalink
Eddie Bergman: Enable tests to be manually triggered (#1325)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Dec 1, 2021
1 parent b7a50d8 commit bac8fda
Show file tree
Hide file tree
Showing 75 changed files with 1,157 additions and 894 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
},
"outputs": [],
"source": [
"# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(np.int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)"
"# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
# More information on: https://scikit-learn.org/stable/modules/multiclass.html
y[y == 'TRUE'] = 1
y[y == 'FALSE'] = 0
y = y.astype(np.int)
y = y.astype(int)

# Using type of target is a good way to make sure your data
# is properly formatted
Expand Down
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_002.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_003.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 2 additions & 2 deletions development/_modules/autosklearn/estimators.html
Original file line number Diff line number Diff line change
Expand Up @@ -346,13 +346,13 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
<span class="sd"> Attributes</span>
<span class="sd"> ----------</span>

<span class="sd"> cv_results\_ : dict of numpy (masked) ndarrays</span>
<span class="sd"> cv_results_ : dict of numpy (masked) ndarrays</span>
<span class="sd"> A dict with keys as column headers and values as columns, that can be</span>
<span class="sd"> imported into a pandas ``DataFrame``.</span>

<span class="sd"> Not all keys returned by scikit-learn are supported yet.</span>

<span class="sd"> performance_over_time\_ : pandas.core.frame.DataFrame</span>
<span class="sd"> performance_over_time_ : pandas.core.frame.DataFrame</span>
<span class="sd"> A ``DataFrame`` containing the models performance over time data. Can be</span>
<span class="sd"> used for plotting directly. Please refer to the example</span>
<span class="sd"> :ref:`Train and Test Inputs &lt;sphx_glr_examples_40_advanced_example_pandas_train_test.py&gt;`.</span>
Expand Down
81 changes: 50 additions & 31 deletions development/_modules/autosklearn/metrics.html

Large diffs are not rendered by default.

12 changes: 8 additions & 4 deletions development/_modules/autosklearn/pipeline/components/base.html
Original file line number Diff line number Diff line change
Expand Up @@ -259,13 +259,16 @@ <h1>Source code for autosklearn.pipeline.components.base</h1><div class="highlig


<span class="k">class</span> <span class="nc">IterativeComponent</span><span class="p">(</span><span class="n">AutoSklearnComponent</span><span class="p">):</span>

<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

<span class="n">iteration</span> <span class="o">=</span> <span class="mi">2</span>
<span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">configuration_fully_fitted</span><span class="p">():</span>
<span class="n">n_iter</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">2</span> <span class="o">**</span> <span class="n">iteration</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">iteration</span> <span class="o">+=</span> <span class="mi">1</span>

<span class="k">return</span> <span class="bp">self</span>

<span class="nd">@staticmethod</span>
Expand All @@ -277,15 +280,16 @@ <h1>Source code for autosklearn.pipeline.components.base</h1><div class="highlig


<span class="k">class</span> <span class="nc">IterativeComponentWithSampleWeight</span><span class="p">(</span><span class="n">AutoSklearnComponent</span><span class="p">):</span>

<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>

<span class="n">iteration</span> <span class="o">=</span> <span class="mi">2</span>
<span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">configuration_fully_fitted</span><span class="p">():</span>
<span class="n">n_iter</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mi">2</span> <span class="o">**</span> <span class="n">iteration</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">iterative_fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">n_iter</span><span class="o">=</span><span class="n">n_iter</span><span class="p">,</span> <span class="n">refit</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">sample_weight</span><span class="p">)</span>
<span class="n">iteration</span> <span class="o">+=</span> <span class="mi">1</span>

<span class="k">return</span> <span class="bp">self</span>

<span class="nd">@staticmethod</span>
Expand Down
Loading

0 comments on commit bac8fda

Please sign in to comment.