-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
881 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# BYOC\n", | ||
"\n", | ||
"Examples on how to use your own model serving containers or extend pre-built containers on SageMaker." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## TensorFlow\n", | ||
"---\n", | ||
"\n", | ||
"### Elastic inference\n", | ||
"\n", | ||
"* [Using Amazon Elastic Inference with a pre-trained TensorFlow Serving model on SageMaker](../sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.ipynb)\n", | ||
"\n", | ||
"### TensorFlow Serving container\n", | ||
"\n", | ||
"* [Using the SageMaker TensorFlow Serving Container](../sagemaker-python-sdk/tensorflow_serving_container/tensorflow_serving_container.ipynb)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"instance_type": "ml.t3.medium", | ||
"kernelspec": { | ||
"display_name": "Python 3 (Data Science)", | ||
"language": "python", | ||
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Data Types" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Image\n", | ||
"---\n", | ||
"\n", | ||
"* [MNIST Training using PyTorch](../sagemaker-python-sdk/pytorch_mnist/pytorch_mnist.ipynb)\n", | ||
"* [Using the SageMaker TensorFlow Serving Container](../sagemaker-python-sdk/tensorflow_serving_container/tensorflow_serving_container.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Tabular\n", | ||
"---\n", | ||
"\n", | ||
"* [Iris Training and Prediction with Sagemaker Scikit-learn](../sagemaker-python-sdk/scikit_learn_iris/scikit_learn_estimator_example_with_batch_transform.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Text\n", | ||
"---\n", | ||
"\n", | ||
"* [Hosting and Deployment of Pre-Trained Text Models using SageMaker Endpoint and BlazingText](../introduction_to_amazon_algorithms/blazingtext_hosting_pretrained_fasttext/blazingtext_hosting_pretrained_fasttext.ipynb)\n", | ||
"\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Time series\n", | ||
"---\n", | ||
"\n", | ||
"* [Time series forecasting with DeepAR - Synthetic data](../introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"instance_type": "ml.t3.medium", | ||
"kernelspec": { | ||
"display_name": "Python 3 (Data Science)", | ||
"language": "python", | ||
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Get started with endpoints\n", | ||
"\n", | ||
"Examples on how to use your own model serving containers or extend pre-built containers on SageMaker.\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## A/B testing\n", | ||
"---\n", | ||
"\n", | ||
"* [A/B Testing with Amazon SageMaker](../sagemaker_endpoints/a_b_testing/a_b_testing.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Multi-model endpoints\n", | ||
"---\n", | ||
"\n", | ||
"* [Amazon SageMaker Multi-Model Endpoints using Scikit Learn](../advanced_functionality/multi_model_sklearn_home_value/sklearn_multi_model_endpoint_home_value.ipynb)\n", | ||
"* [Amazon SageMaker Multi-Model Endpoints using XGBoost](../advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.ipynb)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"instance_type": "ml.t3.medium", | ||
"kernelspec": { | ||
"display_name": "Python 3 (Data Science)", | ||
"language": "python", | ||
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Deploy Models with SageMaker\n", | ||
"\n", | ||
"Examples on how to host models for predictions, inference, and transformations with SageMaker." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Bring your own container\n", | ||
"---\n", | ||
"\n", | ||
"* [Bring Your Own Container (BYOC)](bring_your_own_container.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Data types\n", | ||
"---\n", | ||
"\n", | ||
"* [Data Types](data_types.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Model deployment\n", | ||
"---\n", | ||
"\n", | ||
"* [Use Your Own Inference Code with Amazon SageMaker XGBoost Algorithm](../introduction_to_amazon_algorithms/xgboost_abalone/xgboost_inferenece_script_mode.ipynb)\n", | ||
"* [TensorFlow BYOM: Train locally and deploy on SageMaker.](../advanced_functionality/tensorflow_iris_byom/tensorflow_BYOM_iris.ipynb)\n", | ||
"* [Bring Your Own Model (k-means)](../advanced_functionality/kmeans_bring_your_own_model/kmeans_bring_your_own_model.ipynb)\n", | ||
"* [Amazon SageMaker XGBoost Bring Your Own Model](../advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb)\n", | ||
"\n", | ||
"### Elastic inference\n", | ||
"\n", | ||
"* [Using Amazon Elastic Inference with MXNet on Amazon SageMaker](../sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference.ipynb)\n", | ||
"* [Using Amazon Elastic Inference with MXNet on an Amazon SageMaker Notebook Instance](../sagemaker-python-sdk/mxnet_mnist/mxnet_mnist_elastic_inference_local.ipynb)\n", | ||
"* [Hosting ONNX models with Amazon Elastic Inference](../sagemaker-python-sdk/mxnet_onnx_eia/mxnet_onnx_eia.ipynb)\n", | ||
"\n", | ||
"\n", | ||
"### Endpoints\n", | ||
"\n", | ||
"* [Endpoints](endpoints.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Multi-Model Deployment\n", | ||
"---\n", | ||
"\n", | ||
"* [Amazon SageMaker Multi-Model Endpoints using Scikit Learn](../advanced_functionality/multi_model_sklearn_home_value/sklearn_multi_model_endpoint_home_value.ipynb)\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Nvidia Triton Inference\n", | ||
"---\n", | ||
"\n", | ||
"* [Triton on SageMaker - Deploying a PyTorch Resnet50 model](../sagemaker-triton/resnet50/triton_resnet50.ipynb)\n", | ||
"* [Triton on SageMaker - NLP Bert](../sagemaker-triton/nlp_bert/triton_nlp_bert.ipynb)\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (Data Science)", | ||
"language": "python", | ||
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.