Skip to content

Commit

Permalink
Merge branch 'aws:main' into ag-tt2
Browse files Browse the repository at this point in the history
  • Loading branch information
Neo9061 authored Jun 17, 2022
2 parents f749713 + 3ca8d37 commit eb58f9f
Show file tree
Hide file tree
Showing 25 changed files with 7,094 additions and 5,066 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@
],
"source": [
"import sagemaker\n",
"\n",
"print(sagemaker.__version__)"
]
},
Expand Down Expand Up @@ -338,6 +339,7 @@
"from sagemaker import get_execution_role\n",
"from sagemaker.amazon.amazon_estimator import image_uris\n",
"import boto3\n",
"from time import gmtime, strftime\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
Expand All @@ -350,7 +352,7 @@
"\n",
"# This is references the AWS managed XGBoost container\n",
"XGBOOST_IMAGE = image_uris.retrieve(\n",
" region=boto3.Session().region_name, framework=\"xgboost\", version=\"1.0-1\"\n",
" region=boto3.Session().region_name, framework=\"xgboost\", version=\"1.5-1\"\n",
")\n",
"\n",
"DATA_PREFIX = \"XGBOOST_BOSTON_HOUSING\"\n",
Expand All @@ -359,7 +361,7 @@
"TRAIN_INSTANCE_TYPE = \"ml.m4.xlarge\"\n",
"ENDPOINT_INSTANCE_TYPE = \"ml.m4.xlarge\"\n",
"\n",
"ENDPOINT_NAME = \"mme-xgboost-housing\"\n",
"ENDPOINT_NAME = f'mme-xgboost-housing-{strftime(\"%Y-%m-%d-%H-%M-%S\", gmtime())}'\n",
"\n",
"MODEL_NAME = ENDPOINT_NAME"
]
Expand Down Expand Up @@ -506,9 +508,9 @@
" gamma=4,\n",
" min_child_weight=6,\n",
" subsample=0.8,\n",
" silent=0,\n",
" verbosity=0,\n",
" early_stopping_rounds=5,\n",
" objective=\"reg:linear\",\n",
" objective=\"reg:squarederror\",\n",
" num_round=25,\n",
" )\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@
"from sagemaker import image_uris\n",
"\n",
"container = image_uris.retrieve(\n",
" framework=\"xgboost\", region=boto3.Session().region_name, version=\"1.0-1\"\n",
" framework=\"xgboost\", region=boto3.Session().region_name, version=\"1.5-1\"\n",
")"
]
},
Expand Down Expand Up @@ -377,7 +377,7 @@
" gamma=4,\n",
" min_child_weight=6,\n",
" subsample=0.8,\n",
" silent=0,\n",
" verbosity=0,\n",
" objective=\"binary:logistic\",\n",
" num_round=100,\n",
")\n",
Expand Down Expand Up @@ -437,9 +437,9 @@
" split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))\n",
" predictions = \"\"\n",
" for array in split_array:\n",
" predictions = \",\".join([predictions, xgb_predictor.predict(array).decode(\"utf-8\")])\n",
" predictions = \"\".join([predictions, xgb_predictor.predict(array).decode(\"utf-8\")])\n",
"\n",
" return np.fromstring(predictions[1:], sep=\",\")\n",
" return predictions.split(\"\\n\")[:-1]\n",
"\n",
"\n",
"predictions = predict(test_data.values[:, 1:])"
Expand All @@ -458,6 +458,7 @@
"metadata": {},
"outputs": [],
"source": [
"predictions = np.array([float(num) for num in predictions])\n",
"pd.crosstab(\n",
" index=test_data.iloc[:, 0],\n",
" columns=np.round(predictions),\n",
Expand Down Expand Up @@ -621,7 +622,7 @@
" input_shape={\"data\": [1, 69]},\n",
" role=role,\n",
" framework=\"xgboost\",\n",
" framework_version=\"latest\",\n",
" framework_version=\"1.5-1\",\n",
" output_path=output_path,\n",
")"
]
Expand Down Expand Up @@ -670,9 +671,9 @@
" split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))\n",
" predictions = \"\"\n",
" for array in split_array:\n",
" predictions = \",\".join([predictions, compiled_predictor.predict(array).decode(\"utf-8\")])\n",
" predictions = \"\".join([predictions, xgb_predictor.predict(array).decode(\"utf-8\")])\n",
"\n",
" return np.fromstring(predictions[1:], sep=\",\")\n",
" return predictions.split(\"\\n\")[:-1]\n",
"\n",
"\n",
"predictions = optimized_predict(test_data.values[:, 1:])"
Expand Down Expand Up @@ -721,4 +722,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -383,7 +383,7 @@
"source": [
"from sagemaker.image_uris import retrieve\n",
"\n",
"training_image = retrieve(framework=\"xgboost\", region=region, version=\"latest\")\n",
"training_image = retrieve(framework=\"xgboost\", region=region, version=\"1.5-1\")\n",
"\n",
"s3_input_train = \"s3://{}/{}/train\".format(bucket, prefix)\n",
"s3_input_validation = \"s3://{}/{}/validation/\".format(bucket, prefix)\n",
Expand Down
52 changes: 52 additions & 0 deletions inference/bring_your_own_container.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BYOC\n",
"\n",
"Examples on how to use your own model serving containers or extend pre-built containers on SageMaker."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## TensorFlow\n",
"---\n",
"\n",
"### Elastic inference\n",
"\n",
"* [Using Amazon Elastic Inference with a pre-trained TensorFlow Serving model on SageMaker](../sagemaker-python-sdk/tensorflow_serving_using_elastic_inference_with_your_own_model/tensorflow_serving_pretrained_model_elastic_inference.ipynb)\n",
"\n",
"### TensorFlow Serving container\n",
"\n",
"* [Using the SageMaker TensorFlow Serving Container](../sagemaker-python-sdk/tensorflow_serving_container/tensorflow_serving_container.ipynb)\n",
"\n"
]
}
],
"metadata": {
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (Data Science)",
"language": "python",
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
79 changes: 79 additions & 0 deletions inference/data_types.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Types"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Image\n",
"---\n",
"\n",
"* [MNIST Training using PyTorch](../sagemaker-python-sdk/pytorch_mnist/pytorch_mnist.ipynb)\n",
"* [Using the SageMaker TensorFlow Serving Container](../sagemaker-python-sdk/tensorflow_serving_container/tensorflow_serving_container.ipynb)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tabular\n",
"---\n",
"\n",
"* [Iris Training and Prediction with Sagemaker Scikit-learn](../sagemaker-python-sdk/scikit_learn_iris/scikit_learn_estimator_example_with_batch_transform.ipynb)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Text\n",
"---\n",
"\n",
"* [Hosting and Deployment of Pre-Trained Text Models using SageMaker Endpoint and BlazingText](../introduction_to_amazon_algorithms/blazingtext_hosting_pretrained_fasttext/blazingtext_hosting_pretrained_fasttext.ipynb)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Time series\n",
"---\n",
"\n",
"* [Time series forecasting with DeepAR - Synthetic data](../introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb)\n",
"\n"
]
}
],
"metadata": {
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (Data Science)",
"language": "python",
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
59 changes: 59 additions & 0 deletions inference/endpoints.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get started with endpoints\n",
"\n",
"Examples on how to use your own model serving containers or extend pre-built containers on SageMaker.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A/B testing\n",
"---\n",
"\n",
"* [A/B Testing with Amazon SageMaker](../sagemaker_endpoints/a_b_testing/a_b_testing.ipynb)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multi-model endpoints\n",
"---\n",
"\n",
"* [Amazon SageMaker Multi-Model Endpoints using Scikit Learn](../advanced_functionality/multi_model_sklearn_home_value/sklearn_multi_model_endpoint_home_value.ipynb)\n",
"* [Amazon SageMaker Multi-Model Endpoints using XGBoost](../advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.ipynb)\n",
"\n"
]
}
],
"metadata": {
"instance_type": "ml.t3.medium",
"kernelspec": {
"display_name": "Python 3 (Data Science)",
"language": "python",
"name": "python3__SAGEMAKER_INTERNAL__arn:aws:sagemaker:us-west-2:236514542706:image/datascience-1.0"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit eb58f9f

Please sign in to comment.