Skip to content

Commit

Permalink
Amazon Forecast Service Update: Predictor creation now supports selec…
Browse files Browse the repository at this point in the history
…ting an accuracy metric to optimize in AutoML and hyperparameter optimization. This release adds additional accuracy metrics for predictors - AverageWeightedQuantileLoss, MAPE and MASE.
  • Loading branch information
AWS committed Sep 7, 2021
1 parent 36e7d24 commit 479d938
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 5 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{
"type": "feature",
"category": "Amazon Forecast Service",
"contributor": "",
"description": "Predictor creation now supports selecting an accuracy metric to optimize in AutoML and hyperparameter optimization. This release adds additional accuracy metrics for predictors - AverageWeightedQuantileLoss, MAPE and MASE."
}
Original file line number Diff line number Diff line change
Expand Up @@ -896,7 +896,7 @@
},
"AutoMLOverrideStrategy":{
"shape":"AutoMLOverrideStrategy",
"documentation":"<p>Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use <code>LatencyOptimized</code>.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
"documentation":"<note> <p> The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges. </p> </note> <p>Used to overide the default AutoML strategy, which is to optimize predictor accuracy. To apply an AutoML strategy that minimizes training time, use <code>LatencyOptimized</code>.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
},
"PerformHPO":{
"shape":"Boolean",
Expand Down Expand Up @@ -929,6 +929,10 @@
"Tags":{
"shape":"Tags",
"documentation":"<p>The optional metadata that you apply to the predictor to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.</p> <p>The following basic restrictions apply to tags:</p> <ul> <li> <p>Maximum number of tags per resource - 50.</p> </li> <li> <p>For each resource, each tag key must be unique, and each tag key can have only one value.</p> </li> <li> <p>Maximum key length - 128 Unicode characters in UTF-8.</p> </li> <li> <p>Maximum value length - 256 Unicode characters in UTF-8.</p> </li> <li> <p>If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.</p> </li> <li> <p>Tag keys and values are case sensitive.</p> </li> <li> <p>Do not use <code>aws:</code>, <code>AWS:</code>, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has <code>aws</code> as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of <code>aws</code> do not count against your tags per resource limit.</p> </li> </ul>"
},
"OptimizationMetric":{
"shape":"OptimizationMetric",
"documentation":"<p>The accuracy metric used to optimize the predictor.</p>"
}
}
},
Expand Down Expand Up @@ -1507,7 +1511,7 @@
},
"AutoMLOverrideStrategy":{
"shape":"AutoMLOverrideStrategy",
"documentation":"<p>The AutoML strategy used to train the predictor. Unless <code>LatencyOptimized</code> is specified, the AutoML strategy optimizes predictor accuracy.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
"documentation":"<note> <p> The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges. </p> </note> <p>The AutoML strategy used to train the predictor. Unless <code>LatencyOptimized</code> is specified, the AutoML strategy optimizes predictor accuracy.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
},
"PerformHPO":{
"shape":"Boolean",
Expand Down Expand Up @@ -1568,6 +1572,10 @@
"LastModificationTime":{
"shape":"Timestamp",
"documentation":"<p>The last time the resource was modified. The timestamp depends on the status of the job:</p> <ul> <li> <p> <code>CREATE_PENDING</code> - The <code>CreationTime</code>.</p> </li> <li> <p> <code>CREATE_IN_PROGRESS</code> - The current timestamp.</p> </li> <li> <p> <code>CREATE_STOPPING</code> - The current timestamp.</p> </li> <li> <p> <code>CREATE_STOPPED</code> - When the job stopped.</p> </li> <li> <p> <code>ACTIVE</code> or <code>CREATE_FAILED</code> - When the job finished or failed.</p> </li> </ul>"
},
"OptimizationMetric":{
"shape":"OptimizationMetric",
"documentation":"<p>The accuracy metric used to optimize the predictor.</p>"
}
}
},
Expand Down Expand Up @@ -1608,7 +1616,7 @@
"members":{
"ForecastType":{
"shape":"ForecastType",
"documentation":"<p> The Forecast type used to compute WAPE and RMSE. </p>"
"documentation":"<p> The Forecast type used to compute WAPE, MAPE, MASE, and RMSE. </p>"
},
"WAPE":{
"shape":"Double",
Expand All @@ -1617,6 +1625,14 @@
"RMSE":{
"shape":"Double",
"documentation":"<p> The root-mean-square error (RMSE). </p>"
},
"MASE":{
"shape":"Double",
"documentation":"<p>The Mean Absolute Scaled Error (MASE)</p>"
},
"MAPE":{
"shape":"Double",
"documentation":"<p>The Mean Absolute Percentage Error (MAPE)</p>"
}
},
"documentation":"<p> Provides detailed error metrics to evaluate the performance of a predictor. This object is part of the <a>Metrics</a> object. </p>"
Expand Down Expand Up @@ -1895,7 +1911,11 @@
},
"AutoMLOverrideStrategy":{
"shape":"AutoMLOverrideStrategy",
"documentation":"<p>The AutoML strategy used to train the predictor. Unless <code>LatencyOptimized</code> is specified, the AutoML strategy optimizes predictor accuracy.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
"documentation":"<note> <p> The <code>LatencyOptimized</code> AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges. </p> </note> <p>The AutoML strategy used to train the predictor. Unless <code>LatencyOptimized</code> is specified, the AutoML strategy optimizes predictor accuracy.</p> <p>This parameter is only valid for predictors trained using AutoML.</p>"
},
"OptimizationMetric":{
"shape":"OptimizationMetric",
"documentation":"<p>The accuracy metric used to optimize the predictor.</p>"
}
}
},
Expand Down Expand Up @@ -2230,7 +2250,11 @@
},
"ErrorMetrics":{
"shape":"ErrorMetrics",
"documentation":"<p> Provides detailed error metrics on forecast type, root-mean square-error (RMSE), and weighted average percentage error (WAPE). </p>"
"documentation":"<p> Provides detailed error metrics for each forecast type. Metrics include root-mean square-error (RMSE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and weighted average percentage error (WAPE). </p>"
},
"AverageWeightedQuantileLoss":{
"shape":"Double",
"documentation":"<p>The average value of all weighted quantile losses.</p>"
}
},
"documentation":"<p>Provides metrics that are used to evaluate the performance of a predictor. This object is part of the <a>WindowSummary</a> object.</p>"
Expand All @@ -2246,6 +2270,16 @@
"max":3000,
"min":1
},
"OptimizationMetric":{
"type":"string",
"enum":[
"WAPE",
"RMSE",
"AverageWeightedQuantileLoss",
"MASE",
"MAPE"
]
},
"ParameterKey":{
"type":"string",
"max":256,
Expand Down

0 comments on commit 479d938

Please sign in to comment.