Skip to content

berleon/do_users_benefit_from_interpretable_vision

Repository files navigation

Code for "Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset"

Welcome to our code release of our ICLR 2022 paper: "Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset"

This repository contains code to:

  • generate the dataset,
  • train the model,
  • generate the users input for the conditions.

The Two4Two dataset can be found at mschuessler/two4two

Install

python -m venv ../venv
source ../venv/bin/activate
pip install -U pip wheel
# install the right pytorch version. see: https://pytorch.org/get-started/locally/
# pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
# install repo
pip install -e .

Donwload Links

You can execute the following script:

./download_artifacts.sh

Or just download them directly:

[Model Weights] [Dataset Biased]

[Dataset Unbiased] [Export Study]

How to use the model

See ./Example_Analysis.ipynb for how to load and use the pretrained model.

From datasets to final models

The following commands generate a dataset, train a model, and then renders the model's explanations.

python -m two4two --download_blender config/dataset_config.toml
# change `cuda` to your preferred device
dubfiv_train --device cuda --output_base_dir ./models --experiment config/model.toml 
dubfiv_export_user_study --model ./models/<model_dir>

To reproduce the supervised expirement, you need to train a network on an unbiased dataset:

# render unbiased dataset
python -m two4two --download_blender config/dataset_config_unbiased.toml

# train supervised model
dubfiv_supervised \
    --data_output_dir=`realpath models/supervised` \
    --dataset="two4two_obj_color_and_spherical" \
    --model_name=mobilenet_v2 \
    '--model_kwargs={"width_mult": 0.5}' \
    --batch_size=50 \
    --num_epochs=61 \
    --ckpt_freq=20
# run analysis with supervised model and INN
dubfiv_supervised_analysis --supervised_dir ./models/supervised/<supervised_model_dir> --model ./models/<inn_model>

Points to the code

Citation

@inproceedings{
    sixt2022do,
    title={Do Users Benefit From Interpretable Vision? A User Study, Baseline, And Dataset},
    author={Leon Sixt and Martin Schuessler and Oana-Iuliana Popescu and Philipp Wei{\ss} and Tim Landgraf},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=v6s3HVjPerv}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published