-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added fast calculation of silhouetterank
- Loading branch information
1 parent
146bdf4
commit 9fe4e34
Showing
6 changed files
with
551 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -42,7 +42,7 @@ def run(self): | |
|
||
setuptools.setup( | ||
name="silhouetteRank", | ||
version="1.0.5.11", | ||
version="1.0.5.13", | ||
author="Qian Zhu", | ||
author_email="[email protected]", | ||
description="silhouetteRank is a tool for finding spatially variable genes based on computing silhouette coefficient from binarized spatial gene expression data", | ||
|
@@ -55,6 +55,11 @@ def run(self): | |
"silhouette_rank_one = silhouetteRank.silhouette_rank_one:main", | ||
"silhouette_rank_main = silhouetteRank.evaluate_2b:main", | ||
"silhouette_rank_random = silhouetteRank.evaluate_exact_one_2b:main", | ||
"silhouette_rank_random_batch = silhouetteRank.evaluate_exact_2b:main", | ||
"slrank_fast = silhouetteRank.evaluate_fast_2b:main", | ||
"slrank_random_fast = silhouetteRank.evaluate_fast_one_2b:main", | ||
"slrank_prep_fast = silhouetteRank.prep_fast:main", | ||
"slrank_combine_fast = silhouetteRank.combine_fast:main", | ||
] | ||
}, | ||
classifiers=( | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
import math | ||
import sys | ||
import os | ||
import re | ||
import scipy | ||
import scipy.stats | ||
import numpy as np | ||
from operator import itemgetter | ||
import silhouetteRank | ||
import logging | ||
import argparse | ||
import subprocess | ||
def read(n): | ||
f = open(n) | ||
by_gene = {} | ||
for l in f: | ||
l = l.rstrip("\n") | ||
ll = l.split() | ||
gene = ll[0] | ||
pval = float(ll[-2]) | ||
by_gene[gene] = pval | ||
f.close() | ||
return by_gene | ||
|
||
def do_one(args): | ||
result = subprocess.call("Rscript --version 2> /dev/null", shell=True) | ||
if result==127: | ||
sys.stderr.write("Rscript is not found\n") | ||
sys.stderr.flush() | ||
sys.exit(1) | ||
|
||
outdir=args.input | ||
log_file = "%s/%s" % (outdir, args.log_file) | ||
logger = logging.getLogger("combine_fast") | ||
logger.setLevel(logging.DEBUG) | ||
|
||
if not logger.hasHandlers(): | ||
handler = logging.FileHandler(log_file) | ||
handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) | ||
logger.addHandler(handler) | ||
if args.verbose: | ||
logger.addHandler(logging.StreamHandler()) | ||
|
||
logger.info("Entering %s..." % os.path.basename(args.input)) | ||
|
||
logger.info("Using existing input binaries...") | ||
expr = np.load("%s/expr.npy" % args.input) | ||
Xcen = np.load("%s/Xcen.npy" % args.input) | ||
genes = np.load("%s/genes.npy" % args.input) | ||
|
||
ncell = Xcen.shape[0] | ||
param = {} | ||
full_list = {} | ||
for examine_top in args.examine_tops: | ||
for rbp_p in args.rbp_ps: | ||
target = int(ncell * examine_top) | ||
dname = "%s/result_fast_sim_5000_%.2f_%.3f" % (args.input, rbp_p, examine_top) | ||
if args.matrix_type=="dissim": | ||
dname = "%s/result_fast_5000_%.2f_%.3f" % (args.input, rbp_p, examine_top) | ||
f = open("%s/par.%d" % (dname, target)) | ||
n_scale = float(f.readline().rstrip("\n").split("\t")[1]) | ||
n_shape = float(f.readline().rstrip("\n").split("\t")[1]) | ||
f.close() | ||
scores = [] | ||
f = open("%s/%d" % (dname, target)) | ||
for l in f: | ||
l = l.rstrip("\n") | ||
scores.append(float(l)) | ||
f.close() | ||
scores = np.sort(np.array(scores)) | ||
param[(rbp_p, examine_top, target)] = (n_scale, n_shape, scores[-250]) | ||
full_list[(rbp_p, examine_top, target)] = scores | ||
|
||
for examine_top in args.examine_tops: | ||
for rbp_p in args.rbp_ps: | ||
for trial in range(args.num_trials): | ||
fname = "%s/silhouette.sim.fast.rbp.%.2f.top.%.3f.%d.txt" % (args.input, rbp_p, examine_top, trial) | ||
if args.matrix_type=="dissim": | ||
fname = "%s/silhouette.fast.rbp.%.2f.top.%.3f.%d.txt" % (args.input, rbp_p, examine_top, trial) | ||
target = int(ncell * examine_top) | ||
f = open(fname) | ||
entries = [] | ||
by_size = {} | ||
ids = {} | ||
ind = 0 | ||
for l in f: | ||
l = l.rstrip("\n") | ||
ll = l.split("\t") | ||
g = ll[1] | ||
sc = float(ll[2]) | ||
n_scale, n_shape, n_exceed = param[(rbp_p, examine_top, target)] | ||
if sc>n_exceed: | ||
xx = math.pow(1.0 - n_shape * (sc - n_exceed) / n_scale, 1.0 / n_shape) | ||
P = 0.05 * xx | ||
else: | ||
P = 0.01 * (100 - scipy.stats.percentileofscore(full_list[(rbp_p, examine_top, target)], sc)) | ||
entries.append([g, target, target, sc, P]) | ||
by_size.setdefault(target, []) | ||
by_size[target].append(P) | ||
ids.setdefault(target, []) | ||
ids[target].append(ind) | ||
ind+=1 | ||
f.close() | ||
|
||
for targ in ids: | ||
fw = open("/tmp/1", "w") | ||
for i in by_size[targ]: | ||
fw.write(str(i) + "\n") | ||
fw.close() | ||
os.system("Rscript %s/qval.R /tmp/1 /tmp/1.qval" % os.path.dirname(silhouetteRank.__file__)) | ||
s_scores = [] | ||
f = open("/tmp/1.qval") | ||
for l in f: | ||
l = l.rstrip("\n") | ||
s_scores.append(float(l)) | ||
f.close() | ||
for i1, i2 in zip(ids[targ], s_scores): | ||
entries[i1].append(i2) | ||
o_name = "%s/silhouette.sim.fast.rbp.%.2f.top.%.3f.%d.pval.txt" % (args.input, rbp_p, examine_top, trial) | ||
if args.matrix_type=="dissim": | ||
o_name = "%s/silhouette.fast.rbp.%.2f.top.%.3f.%d.pval.txt" % (args.input, rbp_p, examine_top, trial) | ||
fw = open(o_name, "w") | ||
for i1, i2, i3, i4, i5, i6 in entries: | ||
fw.write("%s %s %s %s %s %s\n" % (str(i1), str(i2), str(i3), str(i4), str(i5), str(i6))) | ||
fw.close() | ||
|
||
|
||
by_gene = {} | ||
for examine_top in args.examine_tops: | ||
for rbp_p in args.rbp_ps: | ||
for trial in range(args.num_trials): | ||
fname = "%s/silhouette.sim.fast.rbp.%.2f.top.%.3f.%d.pval.txt" % (args.input, rbp_p, examine_top, trial) | ||
if args.matrix_type=="dissim": | ||
fname = "%s/silhouette.fast.rbp.%.2f.top.%.3f.%d.pval.txt" % (args.input, rbp_p, examine_top, trial) | ||
by_gene[(examine_top, rbp_p, trial)] = read(fname) | ||
|
||
all_genes = list(by_gene[(args.examine_tops[0], args.rbp_ps[0], 0)].keys()) | ||
score = {} | ||
pval = {} | ||
for g in all_genes: | ||
score[g] = 0 | ||
tot_test = 0 | ||
for i in args.examine_tops: | ||
for j in args.rbp_ps: | ||
for k in range(args.num_trials): | ||
score[g] += math.log(by_gene[(i, j, k)][g]) | ||
tot_test+=1 | ||
score[g] *= -2.0 | ||
pval[g] = np.exp(scipy.stats.chi2.logsf(score[g], tot_test*2)) | ||
|
||
score_it = list(score.items()) | ||
score_it.sort(key=itemgetter(1), reverse=True) | ||
fw = open("/tmp/1.pval", "w") | ||
for i,j in score_it: | ||
fw.write(str(pval[i]) + "\n") | ||
fw.close() | ||
|
||
os.system("Rscript %s/qval.R /tmp/1.pval /tmp/1.qval" % os.path.dirname(silhouetteRank.__file__)) | ||
f = open("/tmp/1.qval") | ||
q_score = [] | ||
for l in f: | ||
l = l.rstrip("\n") | ||
q_score.append(float(l)) | ||
f.close() | ||
|
||
fw = open(args.output, "w") | ||
for (i,j),k in zip(score_it, q_score): | ||
fw.write("%s %s %s %s\n" % (str(i), str(j), str(pval[i]), str(k))) | ||
fw.close() | ||
|
||
if __name__=="__main__": | ||
parser = argparse.ArgumentParser(description="combine.py: combine spatial scores across parameters", formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument("-i", "--input", dest="input", type=str, required=True, help="input directory (should be whatever that contains result_5000)") | ||
#parser.add_argument("-j", "--input-random", dest="input_random", type=str, required=True, help="input random silhouette scores (for random patterns)") | ||
parser.add_argument("-o", "--output", dest="output", type=str, required=True, help="output file name") | ||
#parser.add_argument("-u", "--output-dir", dest="outdir", type=str, help="output directory containing binary files", default=".") | ||
parser.add_argument("-l", "--log-filename", dest="log_file", type=str, default="master.combine.fast.log", help="log file name (no path), will be generated in same directory as --output") | ||
parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="print verbose messages to console") | ||
|
||
parser.add_argument("-r", "--rbp-ps", dest="rbp_ps", nargs="+", type=float, default=[0.95, 0.99], help="p parameter of RBP") | ||
parser.add_argument("-e", "--examine-tops", dest="examine_tops", nargs="+", type=float, default=[0.005, 0.010, 0.050, 0.100, 0.300], help="top proportion of cells per gene to be 1's (expressed)") | ||
parser.add_argument("-m", "--matrix-type", dest="matrix_type", type=str, choices=["sim", "dissim"], help="whether to calculate similarity matrix or dissimilarity matrix", default="dissim") | ||
parser.add_argument("-t", "--num-trials", dest="num_trials", type=int, default=1, help="number of trials") | ||
#parser.add_argument("-i", "--input-dir", dest="input", type=str, default=".", help="input directory containing individual spatial score rankings (to be aggregated)") | ||
#parser.add_argument("-o", "--output", dest="output", type=str, required=True, help="output file name") | ||
args = parser.parse_args() | ||
do_one(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
import sys | ||
import os | ||
import re | ||
import numpy as np | ||
import math | ||
import scipy | ||
import silhouetteRank | ||
import silhouetteRank.spatial_genes as spatial_genes | ||
from operator import itemgetter | ||
from scipy.spatial.distance import squareform, pdist | ||
from scipy.stats import percentileofscore | ||
from sklearn.metrics import roc_auc_score | ||
import argparse | ||
import logging | ||
|
||
def read(f_expr="expression.txt", f_Xcen="Xcen.good", logger=logging): | ||
logger.info("Reading gene expression...") | ||
f = open(f_expr) | ||
h = f.readline().rstrip("\n").split("\t")[1:] | ||
num_cell = len(h) | ||
num_gene = 0 | ||
for l in f: | ||
l = l.rstrip("\n") | ||
num_gene+=1 | ||
f.close() | ||
|
||
expr = np.empty((num_gene, num_cell), dtype="float32") | ||
genes = [] | ||
f = open(f_expr) | ||
f.readline() | ||
ig = 0 | ||
for l in f: | ||
l = l.rstrip("\n") | ||
ll = l.split("\t") | ||
gene = ll[0] | ||
genes.append(gene) | ||
expr[ig,:] = [float(v) for v in ll[1:]] | ||
ig+=1 | ||
f.close() | ||
logger.info("Reading cell coordinates...") | ||
f = open(f_Xcen) | ||
Xcen = np.empty((num_cell, 2), dtype="float32") | ||
f.readline() | ||
ic = 0 | ||
for l in f: | ||
l = l.rstrip("\n") | ||
ll = l.split("\t") | ||
Xcen[ic,:] = [float(ll[1]), float(ll[2])] | ||
ic+=1 | ||
f.close() | ||
return expr, Xcen, genes | ||
|
||
def do_one(args): | ||
matrix_type = args.matrix_type | ||
rbp_p = args.rbp_p | ||
|
||
if not os.path.isdir(args.output): | ||
os.mkdir(args.output) | ||
|
||
logdir="%s/logs.fast" % args.output | ||
if not os.path.isdir(logdir): | ||
os.mkdir(logdir) | ||
log_file = "%s/real_%.2f_%.3f.out" % (logdir, args.rbp_p, args.examine_top) | ||
logger = logging.getLogger("real_fast_%.2f_%.3f" % (args.rbp_p, args.examine_top)) | ||
logger.setLevel(logging.DEBUG) | ||
|
||
if not logger.hasHandlers(): | ||
handler = logging.FileHandler(log_file, "w") | ||
handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")) | ||
logger.addHandler(handler) | ||
if args.verbose: | ||
logger.addHandler(logging.StreamHandler()) | ||
|
||
t_overwrite = args.overwrite_input_bin | ||
check_required = ["expr.npy", "Xcen.npy", "genes.npy", "t_matrix_%s_%.2f.npy" % (args.matrix_type, args.rbp_p)] | ||
for cr in check_required: | ||
if not os.path.isfile("%s/%s" % (args.output, cr)): | ||
t_overwrite = True | ||
break | ||
|
||
expr, Xcen, genes, t_matrix = None, None, None, None | ||
if t_overwrite: | ||
expr, Xcen, genes = read(f_expr=args.expr, f_Xcen=args.centroid, logger=logger) | ||
logger.info("Calculate all pairwise Euclidean distance between cells using their physical coordinates") | ||
euc = squareform(pdist(Xcen, metric="euclidean")) | ||
logger.info("Rank transform euclidean distance, and then apply exponential transform") | ||
t_matrix = spatial_genes.rank_transform_matrix(euc, reverse=False, rbp_p=rbp_p, matrix_type=matrix_type, logger=logger) | ||
np.save("%s/t_matrix_%s_%.2f.npy" % (args.output, args.matrix_type, args.rbp_p), t_matrix) | ||
np.save("%s/expr.npy" % args.output, expr) | ||
np.save("%s/Xcen.npy" % args.output, Xcen) | ||
np.save("%s/genes.npy" % args.output, genes) | ||
else: | ||
logger.info("Using existing input binaries...") | ||
expr = np.load("%s/expr.npy" % args.output) | ||
Xcen = np.load("%s/Xcen.npy" % args.output) | ||
genes = np.load("%s/genes.npy" % args.output) | ||
t_matrix = np.load("%s/t_matrix_%s_%.2f.npy" % (args.output, args.matrix_type, args.rbp_p)) | ||
|
||
logger.info("Compute silhouette metric per gene using fast method") | ||
examine_top = args.examine_top | ||
|
||
for t_trial in range(args.num_trials): | ||
res = spatial_genes.calc_silhouette_per_gene_approx(genes=genes, expr=expr, matrix=t_matrix, matrix_type=matrix_type, examine_top=examine_top, logger=logger) | ||
if matrix_type=="sim": | ||
f_name = "%s/silhouette.sim.fast.rbp.%.2f.top.%.3f.%d.txt" % (args.output, rbp_p, examine_top, t_trial) | ||
else: | ||
f_name = "%s/silhouette.fast.rbp.%.2f.top.%.3f.%d.txt" % (args.output, rbp_p, examine_top, t_trial) | ||
fw = open(f_name, "w") | ||
for ind,v in enumerate(res): | ||
fw.write("%d\t%s\t%.10f\n" % (ind, v[0], v[1])) | ||
fw.close() | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="evaluate.2b.py: calculate silhouette score for spatial patterns", formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument("-x", "--file-expr", dest="expr", type=str, required=True, help="expression matrix. Will use input binary expr.npy (if exists) to speed up reading.") | ||
parser.add_argument("-c", "--file-centroid", dest="centroid", type=str, required=True, help="cell coordinate. Will use input binary Xcen.npy (if exists) to speed up reading.") | ||
parser.add_argument("-w", "--overwrite-input-binary", dest="overwrite_input_bin", action="store_true", help="overwrite input binaries") | ||
parser.add_argument("-e", "--examine-top", dest="examine_top", type=float, default=0.05, help="top proportion of cells per gene to be 1's (expressed)") | ||
|
||
parser.add_argument("-r", "--rbp-p", dest="rbp_p", type=float, default=0.95, help="p parameter of RBP") | ||
parser.add_argument("-m", "--matrix-type", dest="matrix_type", type=str, choices=["sim", "dissim"], help="whether to calculate similarity matrix or dissimilarity matrix", default="dissim") | ||
parser.add_argument("-o", "--output-dir", dest="output", type=str, default=".", help="output directory") | ||
parser.add_argument("-t", "--num-trials", dest="num_trials", type=int, default=1, help="number of trials") | ||
parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="print verbose messages to console") | ||
|
||
args = parser.parse_args() | ||
do_one(args) | ||
|
||
if __name__=="__main__": | ||
main() |
Oops, something went wrong.