python 3.7, anaconda or miniconda, https://github.com/Kaggle/kaggle-api, https://github.com/trent-b/iterative-stratification
kaggle competitions download -c bengaliai-cv19
conda create --name bengali-ai python=3.7 pandas pillow
conda install -c trent-b iterative-stratification
conda install -c conda-forge pyarrow tqdm imgaug
conda install albumentations -c albumentations
pip install pretrainedmodels
## For CPU
conda install pytorch torchvision cpuonly -c pytorch
## For GPU with cuda 10.0
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
https://www.youtube.com/watch?v=8J5Q4mEzRtY
mkdir input
andpip install --user kaggle
and add path usingexport PATH="$HOME/.local/bin:$PATH"
and add kaggle credential using https://github.com/Kaggle/kaggle-api/blob/master/README.md- Download dataset in
input
folder usingkaggle competitions download -c bengaliai-cv19
command - unzip it using
unzip bengaliai-cv19.zip
- run
create_folds.py
- check the .parquet data file using
check_dataframes.py
, if data is readable then conintue - Create .pickle files of the dataset using
create_image_pickles.py
. This is because training will be faster with pickles - run
run.sh
file to train the model. Change the training configurations onrun.sh
- model will be saved in src folder
- Use the notebook located in
infer.zip
for kaggle submission and upload your model to the notebook
- AUC/ROC
- T-SNE
- Use different loss functions like center-loss
- Use different feature extractors like arcFace