Tensorflow implementation of paper "Improved Training of Wasserstein GANs".
- 0 epoch
- 25 epoch
- 50 epoch
- 100 epoch
- 150 epoch
- Python 2.7 or 3.5
- Tensorflow 1.3+
- SciPy
- Aligned&Cropped celebA dataset(download)
- (Optional) moviepy (for visualization)
-
Download aligned&cropped celebA dataset(link) and unzip at ./data/img_align_celeba
-
Train:
$ python main.py --train
Or you can set some arguments like:
$ python main.py --dataset=celebA --max_epoch=50 --learning_rate=1e-4 --train
-
Test:
$ python main.py
Based on the implementation carpedm20/DCGAN-tensorflow, LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow, shekkizh/WassersteinGAN.tensorflow and igul222/improved_wgan_training.