-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ed039c1
commit e0bfa17
Showing
3 changed files
with
284 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import time | ||
|
||
import brainstate as bst | ||
import brainunit as u | ||
|
||
import braintaichi as bti | ||
|
||
s = 1e-2 | ||
Cm = 200 * s # Membrane Capacitance [pF] | ||
gl = 10. * s # Leak Conductance [nS] | ||
g_Na = 20. * 1000 * s | ||
g_Kd = 6. * 1000 * s # K Conductance [nS] | ||
El = -60. # Resting Potential [mV] | ||
ENa = 50. # reversal potential (Sodium) [mV] | ||
EK = -90. # reversal potential (Potassium) [mV] | ||
VT = -63. | ||
V_th = -20. | ||
taue = 5. # Excitatory synaptic time constant [ms] | ||
taui = 10. # Inhibitory synaptic time constant [ms] | ||
Ee = 0. # Excitatory reversal potential (mV) | ||
Ei = -80. # Inhibitory reversal potential (Potassium) [mV] | ||
we = 6. * s # excitatory synaptic conductance [nS] | ||
wi = 67. * s # inhibitory synaptic conductance [nS] | ||
|
||
|
||
class HH(bst.nn.Neuron): | ||
def __init__(self, size, method='exp_auto'): | ||
super(HH, self).__init__(size) | ||
|
||
def init_state(self, *args, **kwargs): | ||
# variables | ||
self.V = bst.State(El + bst.random.randn(self.num) * 5 - 5.) | ||
self.m = bst.State(u.math.zeros(self.num)) | ||
self.n = bst.State(u.math.zeros(self.num)) | ||
self.h = bst.State(u.math.zeros(self.num)) | ||
self.rate = bst.State(u.math.zeros(self.num)) | ||
self.spike = bst.State(u.math.zeros(self.num, dtype=bool)) | ||
|
||
def dV(self, V, t, m, h, n, Isyn): | ||
Isyn = self.sum_current_inputs(self.V.value, init=Isyn) # sum projection inputs | ||
gna = g_Na * (m * m * m) * h | ||
n2 = n * n | ||
gkd = g_Kd * (n2 * n2) | ||
dVdt = (-gl * (V - El) - gna * (V - ENa) - gkd * (V - EK) + Isyn) / Cm | ||
return dVdt | ||
|
||
def dm(self, m, t, V, ): | ||
m_alpha = 1.28 / u.math.exprel((13 - V + VT) / 4) | ||
m_beta = 1.4 / u.math.exprel((V - VT - 40) / 5) | ||
dmdt = (m_alpha * (1 - m) - m_beta * m) | ||
return dmdt | ||
|
||
def dh(self, h, t, V): | ||
h_alpha = 0.128 * u.math.exp((17 - V + VT) / 18) | ||
h_beta = 4. / (1 + u.math.exp(-(V - VT - 40) / 5)) | ||
dhdt = (h_alpha * (1 - h) - h_beta * h) | ||
return dhdt | ||
|
||
def dn(self, n, t, V): | ||
n_alpha = 0.16 / u.math.exprel((15 - V + VT) / 5.) | ||
n_beta = 0.5 * u.math.exp((10 - V + VT) / 40) | ||
dndt = (n_alpha * (1 - n) - n_beta * n) | ||
return dndt | ||
|
||
def update(self, inp=0.): | ||
t = bst.environ.get('t') | ||
V = bst.nn.exp_euler_step(self.dV, self.V.value, t, self.m.value, self.h.value, self.n.value, inp) | ||
m = bst.nn.exp_euler_step(self.dm, self.m.value, t, self.V.value) | ||
n = bst.nn.exp_euler_step(self.dn, self.n.value, t, self.V.value) | ||
h = bst.nn.exp_euler_step(self.dh, self.h.value, t, self.V.value) | ||
self.spike.value = u.math.logical_and(self.V.value < V_th, V >= V_th) | ||
self.m.value = m | ||
self.h.value = h | ||
self.n.value = n | ||
self.V.value = V | ||
self.rate.value += self.spike.value | ||
return self.spike.value | ||
|
||
|
||
class CSRLinear(bst.Module): | ||
def __init__(self, n_pre, n_post, g_max, prob): | ||
super().__init__() | ||
self.g_max = g_max | ||
self.n_pre = n_pre | ||
self.n_post = n_post | ||
self.prob = prob | ||
|
||
def update(self, spk): | ||
return bti.jitc_event_mv_prob_homo( | ||
spk, self.g_max, conn_prob=self.prob, shape=(self.n_pre, self.n_post,), seed=123, transpose=True | ||
) | ||
|
||
|
||
class Exponential(bst.Projection): | ||
def __init__(self, num_pre, post, prob, g_max, tau, E): | ||
super().__init__() | ||
|
||
self.proj = bst.nn.HalfProjAlignPostMg( | ||
comm=CSRLinear(num_pre, post.num, g_max, prob), | ||
syn=bst.nn.Expon.delayed(post.num, tau=tau), | ||
out=bst.nn.COBA.delayed(E=E), | ||
post=post | ||
) | ||
|
||
def update(self, spk): | ||
self.proj.update(spk) | ||
|
||
|
||
class COBA_HH_Net(bst.ModuleGroup): | ||
def __init__(self, scale=1.): | ||
super(COBA_HH_Net, self).__init__() | ||
self.num_exc = int(3200 * scale) | ||
self.num_inh = int(800 * scale) | ||
self.num = self.num_exc + self.num_inh | ||
|
||
self.N = HH(self.num) | ||
self.E = Exponential(self.num_exc, self.N, prob=80 / self.num, g_max=we, tau=taue, E=Ee) | ||
self.I = Exponential(self.num_inh, self.N, prob=80 / self.num, g_max=wi, tau=taui, E=Ei) | ||
|
||
def update(self): | ||
self.E(self.N.spike.value[:self.num_exc]) | ||
self.I(self.N.spike.value[self.num_exc:]) | ||
self.N() | ||
|
||
def step_run(self, i): | ||
with bst.environ.context(i=i, t=i * bst.environ.get_dt()): | ||
self.update() | ||
|
||
|
||
def run_a_simulation(scale=10, duration=1e3): | ||
net = COBA_HH_Net(scale=scale) | ||
bst.init_states(net) | ||
|
||
indices = u.math.arange(int(duration / bst.environ.get_dt())) | ||
|
||
t0 = time.time() | ||
# if the network size is big, please turn on "progress_bar" | ||
# otherwise, the XLA may compute wrongly | ||
r = bst.transform.for_loop(net.step_run, indices) | ||
t1 = time.time() | ||
|
||
rate = net.N.rate.value.sum() / net.N.num / duration * 1e3 | ||
|
||
print(f'scale={scale}, size={net.num}, time = {t1 - t0} s, firing rate = {rate} Hz') | ||
|
||
|
||
def check_firing_rate(x64=True, platform='cpu'): | ||
for scale in [1, 2, 4, 6, 8, 10, 20, 30, 40, 50, 80, 100]: | ||
run_a_simulation(scale=scale, duration=2e3) | ||
|
||
|
||
if __name__ == '__main__': | ||
check_firing_rate() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import time | ||
|
||
import brainstate as bst | ||
import jax.numpy as jnp | ||
|
||
import braintaichi as bti | ||
|
||
taum = 20 | ||
taue = 5 | ||
taui = 10 | ||
Vt = -50 | ||
Vr = -60 | ||
El = -60 | ||
Erev_exc = 0. | ||
Erev_inh = -80. | ||
Ib = 20. | ||
ref = 5.0 | ||
we = 0.6 | ||
wi = 6.7 | ||
|
||
|
||
class LIF(bst.nn.Neuron): | ||
def __init__(self, size, V_init: callable, **kwargs): | ||
super(LIF, self).__init__(size, **kwargs) | ||
|
||
# parameters | ||
self.V_rest = Vr | ||
self.V_reset = El | ||
self.V_th = Vt | ||
self.tau = taum | ||
self.tau_ref = ref | ||
|
||
self.V_init = V_init | ||
|
||
def init_state(self, *args, **kwargs): | ||
# variables | ||
self.V = bst.init.state(self.V_init, self.num) | ||
self.spike = bst.init.state(bst.init.Constant(False, dtype=bool), self.num) | ||
self.t_last_spike = bst.init.state(bst.init.Constant(-1e7), self.num) | ||
|
||
def update(self, inp): | ||
inp = self.sum_current_inputs(self.V.value, init=inp) # sum all projection inputs | ||
refractory = (bst.environ.get('t') - self.t_last_spike.value) <= self.tau_ref | ||
V = self.V.value + (-self.V.value + self.V_rest + inp) / self.tau * bst.environ.get_dt() | ||
V = jnp.where(refractory, self.V.value, V) | ||
spike = self.V_th <= V | ||
self.t_last_spike.value = jnp.where(spike, bst.environ.get('t'), self.t_last_spike.value) | ||
self.V.value = jnp.where(spike, self.V_reset, V) | ||
self.spike.value = spike | ||
return spike | ||
|
||
|
||
class CSRLinear(bst.Module): | ||
def __init__(self, n_pre, n_post, g_max, prob): | ||
super().__init__() | ||
self.g_max = g_max | ||
self.n_pre = n_pre | ||
self.n_post = n_post | ||
self.prob = prob | ||
|
||
def update(self, spk): | ||
return bti.jitc_event_mv_prob_homo( | ||
spk, self.g_max, conn_prob=self.prob, shape=(self.n_pre, self.n_post, ), seed=123, transpose=True | ||
) | ||
|
||
|
||
class Exponential(bst.Projection): | ||
def __init__(self, num_pre, post, prob, g_max, tau, E): | ||
super().__init__() | ||
self.proj = bst.nn.HalfProjAlignPostMg( | ||
comm=CSRLinear(num_pre, post.num, g_max, prob), | ||
syn=bst.nn.Expon.delayed(post.num, tau=tau), | ||
out=bst.nn.COBA.delayed(E=E), | ||
post=post | ||
) | ||
|
||
|
||
class COBA(bst.ModuleGroup): | ||
def __init__(self, scale): | ||
super().__init__() | ||
self.num_exc = int(3200 * scale) | ||
self.num_inh = int(800 * scale) | ||
self.N = LIF(self.num_exc + self.num_inh, V_init=bst.init.Normal(-55., 5.)) | ||
self.E = Exponential(self.num_exc, self.N, prob=80. / self.N.num, E=Erev_exc, g_max=we, tau=taue) | ||
self.I = Exponential(self.num_inh, self.N, prob=80. / self.N.num, E=Erev_inh, g_max=wi, tau=taui) | ||
|
||
def init_state(self, *args, **kwargs): | ||
self.rate = bst.init.state(jnp.zeros, self.N.num) | ||
|
||
def update(self, inp=Ib): | ||
self.E(self.N.spike.value[:self.num_exc]) | ||
self.I(self.N.spike.value[self.num_exc:]) | ||
self.N(inp) | ||
self.rate.value += self.N.spike.value | ||
|
||
def step_run(self, i): | ||
with bst.environ.context(i=i, t=i * bst.environ.get_dt()): | ||
self.update() | ||
|
||
|
||
def run_a_simulation(scale=10, duration=1e3, ): | ||
net = COBA(scale=scale) | ||
bst.init_states(net) | ||
indices = jnp.arange(int(duration / bst.environ.get_dt())) | ||
t0 = time.time() | ||
bst.transform.for_loop(net.step_run, indices) | ||
t1 = time.time() | ||
|
||
# running | ||
rate = net.rate.value.sum() / net.N.num / duration * 1e3 | ||
print(f'scale={scale}, size={net.N.num}, time = {t1 - t0} s, ' | ||
f'firing rate = {rate} Hz') | ||
|
||
|
||
def check_firing_rate(): | ||
for s in [1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100]: | ||
run_a_simulation(scale=s, duration=5e3) | ||
|
||
|
||
if __name__ == '__main__': | ||
check_firing_rate() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters