forked from tloen/alpaca-lora
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 26f6478
Showing
6 changed files
with
260,780 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
out/ | ||
7B/ | ||
13B/ | ||
__pycache__/ | ||
checkpoint** | ||
minimal-llama** |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import argparse | ||
import json | ||
import os | ||
import shutil | ||
|
||
import torch | ||
|
||
|
||
""" | ||
Sample usage: | ||
``` | ||
python src/transformers/models/llama/convert_llama_weights_to_hf.py \ | ||
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path | ||
``` | ||
Thereafter, models can be loaded via: | ||
``` | ||
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/") | ||
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/") | ||
``` | ||
""" | ||
|
||
INTERMEDIATE_SIZE_MAP = { | ||
"7B": 11008, | ||
"13B": 13824, | ||
"30B": 17920, | ||
"65B": 22016, | ||
} | ||
NUM_SHARDS = { | ||
"7B": 1, | ||
"13B": 2, | ||
"30B": 4, | ||
"65B": 8, | ||
} | ||
|
||
|
||
def read_json(path): | ||
with open(path, "r") as f: | ||
return json.load(f) | ||
|
||
|
||
def write_json(text, path): | ||
with open(path, "w") as f: | ||
json.dump(text, f) | ||
|
||
|
||
def write_model(model_path, input_base_path, model_size): | ||
assert model_size in INTERMEDIATE_SIZE_MAP | ||
os.makedirs(model_path, exist_ok=True) | ||
|
||
params = read_json(os.path.join(input_base_path, "params.json")) | ||
num_shards = NUM_SHARDS[model_size] | ||
n_layers = params["n_layers"] | ||
n_heads = params["n_heads"] | ||
n_heads_per_shard = n_heads // num_shards | ||
dim = params["dim"] | ||
dims_per_head = dim // n_heads | ||
base = 10000.0 | ||
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | ||
|
||
# permute for sliced rotary | ||
def permute(w): | ||
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) | ||
|
||
# Load weights | ||
if model_size == "7B": | ||
# Not shared | ||
# (The sharded implementation would also work, but this is simpler.) | ||
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") | ||
else: | ||
# Sharded | ||
loaded = [ | ||
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") | ||
for i in range(num_shards) | ||
] | ||
param_count = 0 | ||
index_dict = {"weight_map": {}} | ||
for layer_i in range(n_layers): | ||
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format( | ||
layer_i + 1, | ||
n_layers + 1, | ||
) | ||
if model_size == "7B": | ||
# Unsharded | ||
state_dict = { | ||
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( | ||
loaded[f"layers.{layer_i}.attention.wq.weight"] | ||
), | ||
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( | ||
loaded[f"layers.{layer_i}.attention.wk.weight"] | ||
), | ||
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], | ||
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], | ||
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], | ||
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], | ||
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], | ||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], | ||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], | ||
} | ||
else: | ||
# Sharded | ||
state_dict = { | ||
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"], | ||
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ | ||
f"layers.{layer_i}.ffn_norm.weight" | ||
], | ||
} | ||
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( | ||
torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
) | ||
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( | ||
torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
) | ||
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( | ||
[ | ||
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) | ||
for i in range(num_shards) | ||
], | ||
dim=0, | ||
).reshape(dim, dim) | ||
|
||
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 | ||
) | ||
state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( | ||
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 | ||
) | ||
|
||
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq | ||
for k, v in state_dict.items(): | ||
index_dict["weight_map"][k] = filename | ||
param_count += v.numel() | ||
torch.save(state_dict, os.path.join(model_path, filename)) | ||
|
||
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format( | ||
n_layers + 1, | ||
n_layers + 1, | ||
) | ||
if model_size == "7B": | ||
# Unsharded | ||
state_dict = { | ||
"model.embed_tokens.weight": loaded["tok_embeddings.weight"], | ||
"model.norm.weight": loaded["norm.weight"], | ||
"lm_head.weight": loaded["output.weight"], | ||
} | ||
else: | ||
state_dict = { | ||
"model.norm.weight": loaded[0]["norm.weight"], | ||
"model.embed_tokens.weight": torch.cat( | ||
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 | ||
), | ||
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), | ||
} | ||
|
||
for k, v in state_dict.items(): | ||
index_dict["weight_map"][k] = filename | ||
param_count += v.numel() | ||
torch.save(state_dict, os.path.join(model_path, filename)) | ||
|
||
# Write configs | ||
index_dict["metadata"] = {"total_size": param_count * 2} | ||
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json")) | ||
config_out = { | ||
"architectures": ["LLaMAForCausalLM"], | ||
"bos_token_id": 0, | ||
"eos_token_id": 1, | ||
"hidden_act": "silu", | ||
"hidden_size": params["dim"], | ||
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size], | ||
"initializer_range": 0.02, | ||
"max_sequence_length": 2048, | ||
"model_type": "llama", | ||
"num_attention_heads": params["n_heads"], | ||
"num_hidden_layers": params["n_layers"], | ||
"pad_token_id": -1, | ||
"rms_norm_eps": params["norm_eps"], | ||
"torch_dtype": "float16", | ||
"transformers_version": "4.27.0.dev0", | ||
"use_cache": True, | ||
"vocab_size": 32000, | ||
} | ||
write_json( | ||
config_out, | ||
os.path.join(model_path, "config.json"), | ||
) | ||
generation_config = { | ||
"_from_model_config": True, | ||
"bos_token_id": 0, | ||
"eos_token_id": 1, | ||
"pad_token_id": 0, | ||
"transformers_version": "4.27.0.dev0", | ||
} | ||
write_json( | ||
generation_config, | ||
os.path.join(model_path, "generation_config.json"), | ||
) | ||
|
||
|
||
def write_tokenizer(tokenizer_path, input_tokenizer_path): | ||
os.makedirs(tokenizer_path, exist_ok=True) | ||
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json")) | ||
write_json( | ||
{ | ||
"bos_token": "", | ||
"eos_token": "", | ||
"model_max_length": int(1e30), | ||
"tokenizer_class": "LLaMATokenizer", | ||
"unk_token": "", | ||
}, | ||
os.path.join(tokenizer_path, "tokenizer_config.json"), | ||
) | ||
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model")) | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--input_dir", | ||
help="Location of LLaMA weights, which contains tokenizer.model and model folders", | ||
) | ||
parser.add_argument( | ||
"--model_size", | ||
choices=["7B", "13B", "30B", "65B"], | ||
) | ||
parser.add_argument( | ||
"--output_dir", | ||
help="Location to write HF model and tokenizer", | ||
) | ||
args = parser.parse_args() | ||
write_model( | ||
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()), | ||
input_base_path=os.path.join(args.input_dir, args.model_size), | ||
model_size=args.model_size, | ||
) | ||
write_tokenizer( | ||
tokenizer_path=os.path.join(args.output_dir, "tokenizer"), | ||
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"), | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.