Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: resolve MPIArray warnings #32

Merged
merged 1 commit into from
Jul 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 12 additions & 15 deletions ch_util/rfi.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,12 +197,12 @@ def number_deviations(
list(zip(*[(pp[0], ind) for ind, pp in enumerate(prod) if pp[0] == pp[1]]))
)

auto_vis = data.vis[:, auto_pi, :].view(np.ndarray).copy().real
auto_vis = data.vis[:, auto_pi, :].real.copy()

# If requested, average over all inputs to construct the stacked autocorrelations
# for the instrument (also known as the incoherent beam)
if stack:
weight = (data.weight[:, auto_pi, :].view(np.ndarray) > 0.0).astype(np.float32)
weight = (data.weight[:, auto_pi, :] > 0.0).astype(np.float32)

# Do not include bad inputs in the average
partial_stack = data.index_map["stack"].size < data.index_map["prod"].size
Expand Down Expand Up @@ -236,12 +236,7 @@ def number_deviations(
auto_ii = np.zeros(1, dtype=np.int)

else:
auto_flag = data.weight[:, auto_pi, :].view(np.ndarray) > 0.0

# Convert back to an MPIArray distributed over the freq axis
if parallel:
auto_flag = mpiarray.MPIArray.wrap(auto_flag, axis=0, comm=data.vis.comm)
auto_vis = mpiarray.MPIArray.wrap(auto_vis, axis=0, comm=data.vis.comm)
auto_flag = data.weight[:, auto_pi, :] > 0.0

# Now redistribute the array over inputs
if parallel:
Expand All @@ -257,7 +252,7 @@ def number_deviations(
static_flag = static_flag[:, np.newaxis]

# Create an empty array for number of median absolute deviations
ndev = np.zeros(auto_vis.shape, dtype=np.float32)
ndev = np.zeros_like(auto_vis, dtype=np.float32)

# Calculate frequency interval in bins
fwidth = (
Expand All @@ -267,12 +262,16 @@ def number_deviations(
# Calculate time interval in samples
twidth = int(time_width / np.median(np.abs(np.diff(data.time)))) + 1

auto_flag_view = auto_flag.local_array if parallel else auto_flag
auto_vis_view = auto_vis.local_array if parallel else auto_vis_view
ndev_view = ndev.local_array if parallel else ndev

# Loop over extracted autos and create a mask for each
for ind in range(auto_vis.shape[1]):

# Create a quick copy
flg = static_flag & auto_flag[:, ind].view(np.ndarray)
arr = auto_vis[:, ind].view(np.ndarray).copy()
flg = static_flag & auto_flag_view[:, ind]
arr = auto_vis_view[:, ind].copy()

# Use NaNs to ignore previously flagged data when computing the MAD
arr = np.where(flg, arr.real, np.nan)
Expand All @@ -285,16 +284,14 @@ def number_deviations(
else:
ndev_i = mad_cut_2d(arr, twidth=twidth, fwidth=fwidth, mask=False)

ndev[:, ind, :] = ndev_i
ndev_view[:, ind, :] = ndev_i

# Fill any values equal to NaN with the user specified fill value
ndev = np.where(np.isfinite(ndev), ndev, fill_value)
ndev_view[~np.isfinite(ndev_view)] = fill_value

# Convert back to an MPIArray and redistribute over freq axis
if parallel:
ndev = mpiarray.MPIArray.wrap(ndev, axis=1, comm=data.vis.comm)
ndev = ndev.redistribute(0)

auto_vis = auto_vis.redistribute(0)

return auto_ii, auto_vis, ndev
Expand Down
6 changes: 5 additions & 1 deletion ch_util/timing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1297,7 +1297,11 @@ def apply_timing_correction(self, timestream, copy=False, **kwargs):
else:
is_obj = True

vis = timestream.vis[:] if not copy else timestream.vis[:].copy()
# This works for both distributed and non-distributed datasets
vis = timestream.vis[:].view(np.ndarray)

if copy:
vis = vis.copy()

freq = kwargs.pop("freq") if "freq" in kwargs else timestream.freq[:]
prod = (
Expand Down