Skip to content

claytantor/deeporb-generator-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

deeporb-generator-pytorch

Deep Orb is a project about computers learning how to make music. The core approach to that is Recurrant neural network based learning models are used to teach powerful GPU based systems to compose, choose instuments, genres and ultimately produce complete musical works.

background

LSTM (Long Short Term Memory) and RNNs (Recurrent Neural Networks)

setting up your GPU and container

To use the Nvidia Pytorch Docker Container your host computer will need to have the correct drivers installed first.

CUDA for pytorch

This is the CUDA and driver version I use on Ubuntu 20.04 for this project. It is strogly reccomended that you go directly to NVidia downloads and make sure you have the correct driver fully installed to enable using the container

when you are finsihed nvidia-smi should show you something like this:

$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06    Driver Version: 450.51.06    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce RTX 208...  On   | 00000000:2D:00.0  On |                  N/A |
|  0%   53C    P8    30W / 250W |    637MiB / 11016MiB |     16%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

a script is provided as an example and should work for Ubuntu 20.04 LTS

the docker container

This project exclusely uses docker containers that are provided with PyTorch and are Nvidia GPU and Driver enabled.

building the container

docker build -t claytantor/deeporb-generator-pytorch:latest .

pulling from docker hub

docker pull claytantor/deeporb-generator-pytorch:latest

running the scripts

pipeline

torchutils.py - test your CUDA installation

Before you run the scripts you should test that the CUDA drivers and Pytorch are working together.

docker run --gpus all --shm-size=1g --ulimit \
  memlock=-1 --ulimit stack=67108864 -it \
  --rm -v $(pwd)/workspace:/workspace \
  claytantor/deeporb-generator-pytorch:latest python torchutils.py

and the application should give you device details:

__Python VERSION: 3.6.10 |Anaconda, Inc.| (default, Mar 23 2020, 23:13:11)
[GCC 7.3.0]
__pyTorch VERSION: 1.6.0a0+9907a3e
__CUDA AVILABLE: True
__CUDNN VERSION: 8001
__Number CUDA Devices: 1
__Device: cuda GeForce RTX 2080 Ti
Active CUDA Device: GPU 0
Available devices  1
Current cuda device  0

downloading test data

We have created a package of public domain Beethoven files to use for running the scrip base, for these example you should put them under the /workspace/midi/beethoven directory.

Beethoven and Mozart Midi Files

encode_midi_words.py - encoding midi to words

The use of the encoder is intended to allow for the translation of midi events into words that the LSTM Network can learn from.

parser.add_argument("-m", "--midi", action="store", required=True, dest="midi_dir", help="midi directory to open")

parser.add_argument("-o", "--out", action="store", required=True, dest="out", help="output dir to write to")

parser.add_argument("-s", "--session", action="store", required=True, dest="session", help="session name")

The three arguments are used to recursively scan through a directory for all miding files and segement them by midi instrument and then place note files in the heirchy by insrument under the session directory.

This will allow a dirctory with a collection of songs in a specific folder to be the source of training by all the shared instruments.

docker run --gpus all --shm-size=1g --ulimit \
  memlock=-1 --ulimit stack=67108864 -it \
  --rm -v $(pwd)/workspace:/workspace \
  claytantor/deeporb-generator-pytorch:latest python encode_midi_words.py \
  -m /workspace/midi/sample_a \
  -o /workspace/txt -s sample_a

will generate JSON files that encode each track as a instrument in the tree hierchy under the session name:

sample_a/
├── acoustic_grand_piano
│   ├── acoustic_grand_piano-5327f0.json
│   ├── acoustic_grand_piano-5fd3f0.json
│   ├── acoustic_grand_piano-70634a.json
│   └── acoustic_grand_piano-fa6ca5.json
├── bassoon
│   ├── bassoon-066fb7.json
│   ├── bassoon-0914ff.json
│   ├── bassoon-1143d4.json
│   ├── bassoon-3f1fc7.json
│   ├── bassoon-cfeab3.json
│   └── bassoon-ee5f0c.json
├── flute
│   ├── flute-3de53d.json
│   ├── flute-a36411.json
│   ├── flute-ad9538.json
│   ├── flute-b70b0c.json
│   └── flute-ca6929.json
├── oboe
│   ├── oboe-2d1557.json
│   ├── oboe-8bab24.json
│   ├── oboe-966e2d.json
│   └── oboe-9867cd.json
├── pizzicato_strings
│   ├── pizzicato_strings-0a0100.json
│   ├── pizzicato_strings-42ceac.json
│   ├── pizzicato_strings-f25a22.json
│   └── pizzicato_strings-f7d916.json
├── timpani
│   ├── timpani-02b4e1.json
│   ├── timpani-23a309.json
│   ├── timpani-56550f.json
│   ├── timpani-b7fba5.json
│   └── timpani-d10ac1.json
├── trombone
│   └── trombone-4de151.json
├── trumpet
│   ├── trumpet-02bc5c.json
│   ├── trumpet-4e0d01.json
│   ├── trumpet-7da75f.json
│   └── trumpet-e4ac18.json
└── violin
    └── violin-08d157.json

The file has a list of notes in common musical notation that will be turned into words for the LSTM to learn:

{
    "notes": [{
        "nameWithOctave": "A3",
        "fullName": "A in octave 3 Quarter Note",
        "pitch": {
            "name": "A",
            "microtone": "(+0c)",
            "octave": "3",
            "step": "A"
        },
        "duration": {
            "type": "quarter"
        }
    }]
}

train.py - use the instrument note files to train the model

docker run --gpus all --shm-size=1g --ulimit \
   memlock=-1 --ulimit stack=67108864 -it --rm \
   -v $(pwd)/workspace:/workspace   \
   claytantor/deeporb-generator-pytorch:latest \
   python train.py --data_dir /workspace/txt \
   --session sample_a --training_dir /workspace/training \
   --number 4000   

predict.py - use your training models to generate midi

virtualenv

pyenv activate deeporb-generator-pytorch

python predict.py --data_dir ./workspace/txt \
   -s sample_a -t ./workspace/training \
   --midi_file ./workspace/midi/beethoven/rondo.mid -o ./workspace/midi

from docker

docker run --gpus all --shm-size=1g --ulimit memlock=-1 \
   --ulimit stack=67108864 -it --rm -v $(pwd)/workspace:/workspace \
   claytantor/deeporb-generator-pytorch:latest \
   python predict.py --data_dir /workspace/txt \
   -s sample_a -t /workspace/training \
   --midi_file /workspace/midi/beethoven/rondo.mid -o /workspace/midi

app.py - make a flask webservice

running the flask app

FLASK_ENV=development FLASK_APP=app.py APP_CONFIG=workspace/config/beethoven_local.cfg flask run --host=0.0.0.0 --port=8001

from docker

docker run -p 8001:8001 --gpus all --shm-size=1g --ulimit memlock=-1 \
    -e FLASK_ENV=development -e FLASK_APP=app.py -e APP_CONFIG=/workspace/config/beethoven_docker.cfg \
    --ulimit stack=67108864 -it --rm -v $(pwd)/workspace:/workspace \
    claytantor/deeporb-generator-pytorch:latest

test

curl --location --request GET 'http://localhost:8001/config'

About

the deeporb generator built in pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published