Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More explicit prior shape broadcasting #1520

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 4 additions & 5 deletions gpytorch/kernels/arc_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,25 +121,24 @@ def __init__(
self.register_parameter(
name="raw_angle", parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, self.last_dim)),
)
self.register_constraint("raw_angle", angle_constraint)

if angle_prior is not None:
self.register_prior(
"angle_prior", angle_prior, lambda m: m.angle, lambda m, v: m._set_angle(v),
)

self.register_constraint("raw_angle", angle_constraint)

self.register_parameter(
name="raw_radius", parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, self.last_dim)),
)
radius_constraint = Positive()
self.register_constraint("raw_radius", radius_constraint)

if radius_prior is not None:
self.register_prior(
"radius_prior", radius_prior, lambda m: m.radius, lambda m, v: m._set_radius(v),
)

radius_constraint = Positive()
self.register_constraint("raw_radius", radius_constraint)

self.base_kernel = base_kernel
if self.base_kernel.has_lengthscale:
self.base_kernel.lengthscale = 1
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/kernels/cosine_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ def __init__(self, period_length_prior=None, period_length_constraint=None, **kw

if period_length_constraint is None:
period_length_constraint = Positive()
self.register_constraint("raw_period_length", period_length_constraint)

if period_length_prior is not None:
self.register_prior(
Expand All @@ -74,8 +75,6 @@ def __init__(self, period_length_prior=None, period_length_constraint=None, **kw
lambda m, v: m._set_period_length(v),
)

self.register_constraint("raw_period_length", period_length_constraint)

@property
def period_length(self):
return self.raw_period_length_constraint.transform(self.raw_period_length)
Expand Down
4 changes: 2 additions & 2 deletions gpytorch/kernels/index_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,11 +53,11 @@ def __init__(self, num_tasks, rank=1, prior=None, var_constraint=None, **kwargs)
name="covar_factor", parameter=torch.nn.Parameter(torch.randn(*self.batch_shape, num_tasks, rank))
)
self.register_parameter(name="raw_var", parameter=torch.nn.Parameter(torch.randn(*self.batch_shape, num_tasks)))
self.register_constraint("raw_var", var_constraint)

if prior is not None:
self.register_prior("IndexKernelPrior", prior, lambda m: m._eval_covar_matrix())

self.register_constraint("raw_var", var_constraint)

@property
def var(self):
return self.raw_var_constraint.transform(self.raw_var)
Expand Down
4 changes: 2 additions & 2 deletions gpytorch/kernels/kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,13 +166,13 @@ def __init__(
name="raw_lengthscale",
parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, lengthscale_num_dims)),
)
self.register_constraint("raw_lengthscale", lengthscale_constraint)

if lengthscale_prior is not None:
self.register_prior(
"lengthscale_prior", lengthscale_prior, lambda m: m.lengthscale, lambda m, v: m._set_lengthscale(v)
)

self.register_constraint("raw_lengthscale", lengthscale_constraint)

self.distance_module = None
# TODO: Remove this on next official PyTorch release.
self.__pdist_supports_batch = True
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/kernels/linear_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,11 +57,10 @@ def __init__(self, num_dimensions=None, offset_prior=None, variance_prior=None,
# Remove after 1.0
warnings.warn("The `offset_prior` argument is deprecated and no longer used.", DeprecationWarning)
self.register_parameter(name="raw_variance", parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, 1)))
self.register_constraint("raw_variance", variance_constraint)
if variance_prior is not None:
self.register_prior("variance_prior", variance_prior, lambda m: m.variance, lambda m, v: m._set_variance(v))

self.register_constraint("raw_variance", variance_constraint)

@property
def variance(self):
return self.raw_variance_constraint.transform(self.raw_variance)
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/kernels/periodic_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ def __init__(self, period_length_prior=None, period_length_constraint=None, **kw
self.register_parameter(
name="raw_period_length", parameter=torch.nn.Parameter(torch.zeros(*self.batch_shape, 1, 1))
)
self.register_constraint("raw_period_length", period_length_constraint)

if period_length_prior is not None:
self.register_prior(
Expand All @@ -91,8 +92,6 @@ def __init__(self, period_length_prior=None, period_length_constraint=None, **kw
lambda m, v: m._set_period_length(v),
)

self.register_constraint("raw_period_length", period_length_constraint)

@property
def period_length(self):
return self.raw_period_length_constraint.transform(self.raw_period_length)
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/kernels/polynomial_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,12 +51,11 @@ def __init__(
power = power.item()

self.power = power
self.register_constraint("raw_offset", offset_constraint)

if offset_prior is not None:
self.register_prior("offset_prior", offset_prior, lambda m: m.offset, lambda m, v: m._set_offset(v))

self.register_constraint("raw_offset", offset_constraint)

@property
def offset(self) -> torch.Tensor:
return self.raw_offset_constraint.transform(self.raw_offset)
Expand Down
4 changes: 2 additions & 2 deletions gpytorch/kernels/scale_kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,13 +68,13 @@ def __init__(self, base_kernel, outputscale_prior=None, outputscale_constraint=N
self.base_kernel = base_kernel
outputscale = torch.zeros(*self.batch_shape) if len(self.batch_shape) else torch.tensor(0.0)
self.register_parameter(name="raw_outputscale", parameter=torch.nn.Parameter(outputscale))
self.register_constraint("raw_outputscale", outputscale_constraint)

if outputscale_prior is not None:
self.register_prior(
"outputscale_prior", outputscale_prior, lambda m: m.outputscale, lambda m, v: m._set_outputscale(v)
)

self.register_constraint("raw_outputscale", outputscale_constraint)

@property
def outputscale(self):
return self.raw_outputscale_constraint.transform(self.raw_outputscale)
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/likelihoods/beta_likelihood.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,10 @@ def __init__(self, batch_shape=torch.Size([]), scale_prior=None, scale_constrain
scale_constraint = Positive()

self.raw_scale = torch.nn.Parameter(torch.ones(*batch_shape, 1))
self.register_constraint("raw_scale", scale_constraint)
if scale_prior is not None:
self.register_prior("scale_prior", scale_prior, lambda m: m.scale, lambda m, v: m._set_scale(v))

self.register_constraint("raw_scale", scale_constraint)

@property
def scale(self):
return self.raw_scale_constraint.transform(self.raw_scale)
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/likelihoods/laplace_likelihood.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,12 +29,11 @@ def __init__(self, batch_shape=torch.Size([]), noise_prior=None, noise_constrain
noise_constraint = Positive()

self.raw_noise = torch.nn.Parameter(torch.zeros(*batch_shape, 1))
self.register_constraint("raw_noise", noise_constraint)

if noise_prior is not None:
self.register_prior("noise_prior", noise_prior, lambda m: m.noise, lambda m, v: m._set_noise(v))

self.register_constraint("raw_noise", noise_constraint)

@property
def noise(self):
return self.raw_noise_constraint.transform(self.raw_noise)
Expand Down
3 changes: 1 addition & 2 deletions gpytorch/likelihoods/noise_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,10 @@ def __init__(self, noise_prior=None, noise_constraint=None, batch_shape=torch.Si
noise_constraint = GreaterThan(1e-4)

self.register_parameter(name="raw_noise", parameter=Parameter(torch.zeros(*batch_shape, num_tasks)))
self.register_constraint("raw_noise", noise_constraint)
if noise_prior is not None:
self.register_prior("noise_prior", noise_prior, lambda m: m.noise, lambda m, v: m._set_noise(v))

self.register_constraint("raw_noise", noise_constraint)

@property
def noise(self):
return self.raw_noise_constraint.transform(self.raw_noise)
Expand Down
14 changes: 14 additions & 0 deletions gpytorch/module.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,20 @@ def setting_closure(module, val):
)
closure = param_or_closure

if prior is not None:
hyperparameter_shape = closure(self).shape
prior_shape = prior.shape()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Did this work at any point? Is this meant to be event_shape?

Alternatively we would give Priors a shape property that is just self._batch_shape + self._event_shape.


if prior_shape != hyperparameter_shape:
try:
prior = prior.expand(hyperparameter_shape)
except RuntimeError:
raise RuntimeError(
"Attempting to broadcast a prior that is not broadcastable! "
+ f"Got parameter shape {hyperparameter_shape} "
+ f"but prior shape {prior_shape}!"
)

self.add_module(name, prior)
self._priors[name] = (prior, closure, setting_closure)

Expand Down
6 changes: 6 additions & 0 deletions gpytorch/priors/smoothed_box_prior.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,3 +71,9 @@ def _log_prob(self, x):
# x = "distances from box`"
X = ((x - self._c).abs_() - self._r).clamp(min=0)
return (self.tails.log_prob(X) - self._M).sum(-1)

def expand(self, batch_shape):
batch_shape = torch.Size(batch_shape)
return SmoothedBoxPrior(self.a.expand(batch_shape),
self.b.expand(batch_shape),
self.sigma.expand(batch_shape))