Skip to content

Commit

Permalink
typographical and fixed refs
Browse files Browse the repository at this point in the history
  • Loading branch information
cpeikert committed Dec 11, 2023
1 parent 826d5b3 commit 10389e6
Showing 1 changed file with 6 additions and 9 deletions.
15 changes: 6 additions & 9 deletions src/lec21 - Identity-Based Encryption.tex
Original file line number Diff line number Diff line change
Expand Up @@ -197,15 +197,12 @@ \section{Number Theory Background}
\begin{proof}
The following \emph{reciprocity laws} can be proved with some
effort. We omit their proofs.
\begin{eqnarray}
\label{rec_1} \text{for odd $a$ and $N$}, \quad \left(\frac{a}{N}
\right) &=& \left(\frac{N}{a} \right) \cdot \left( -1
\right)^{\frac{a-1}{2}\cdot\frac{N-1}{2}} \\
\label{rec_2} \text{for any } N, \quad \left(\frac{-1}{N} \right) &=&
\left( -1 \right)^{\frac{N-1}{2}} \\
\label{rec_3}\left(\frac{2}{N} \right) &=& \left( -1
\right)^{\frac{N^2-1}{8}}
\end{eqnarray}
\begin{align}
\label{rec_1} \text{for odd $a$ and $N$}, \quad \parens*{\frac{a}{N}} &= \parens*{\frac{N}{a}} \cdot \parens{-1}^{\frac{a-1}{2}\cdot\frac{N-1}{2}} \; \text. \\
\label{rec_2} \text{for any } N, \quad
\parens*{\frac{-1}{N}} &= \parens{-1}^{\frac{N-1}{2}} \\
\label{rec_3} \parens*{\frac{2}{N}} &= \parens{-1}^{\frac{N^2-1}{8}} \; \text.
\end{align}

For any even number $a$, we can reduce the problem to the case when
$a$ is odd by using \cref{rec_3}. Using \cref{rec_1,rec_2}, we can
Expand Down

0 comments on commit 10389e6

Please sign in to comment.