Skip to content
/ Ensum Public

Implementation of the ISSRE 2021 paper "Improving Code Summarization Through Automated Quality Assurance"

Notifications You must be signed in to change notification settings

cqu-isse/Ensum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 

Repository files navigation

Ensum

Implementation of the ISSRE 2021 paper "Improving Code Summarization Through Automated Quality Assurance"

Setup

Python >=3.6
numpy
scipy
pickle
nltk==3.2.5
sklearn
six==1.11.0
rouge==1.0.0
git+https://github.com/Maluuba/nlg-eval.git@master
typing==3.6.2

Start

1.Dataset
We use the dataset of Deepcom (https://github.com/xing-hu/EMSE-DeepCom)

2.Train your model and get the summaries generated by Deepcom,
Rencos (https://github.com/zhangj111/rencos),
NMT (https://github.com/OpenNMT/)

3.Use Ensum to the summaries.
python Ensum.py approach-name approach-name
For example:
python Ensum.py deepcom deepcom

4.Evaluate your results
nlg-eval --hypothesis=examples/hyp.txt --references=examples/ref.txt

About

Implementation of the ISSRE 2021 paper "Improving Code Summarization Through Automated Quality Assurance"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages